Reprezentacja wiedzy w jezyku logiki

Metody przeszukiwania w przestrzeni standow sformufowane byty w postaci dos¢
ogolnej, jednak wymagaty reprezentacji zagadnienia we wtasciwej formie, tzn.
przestrzeni standw, zbioru operatoréw, a dodatkowo przydatna/potrzebna byta
informacja heurystyczna w formie funkcji oceny stanow.

Ogolnie, format i sposéb reprezentacji wiedzy o zagadnieniu sg niezwykle istotne i maja
bezposredni wptyw na efektywnos¢ — lub w ogdle zdolnos¢ — znalezienia rozwigzania.

Istnieje szereg opracowanych ogdlnych podejs¢ do problemu reprezentacji, i rézne
reprezentacje maja zwykle zwigzane z nimi techniki wnioskowania, czyli formowania
pewnych ustalen pomocniczych (wnioskéw), mogacych stuzy¢ do znalezienia
ostatecznego rozwigzania problemu.

Jednym z najpopularniejszych schematéw reprezentacji wiedzy jest jezyk logiki
matematycznej.
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Dlaczego logika matematyczna jest dobrym jezykiem reprezentacji wiedzy dla sztuczne;
inteligencji?

Z jednej strony, jezyk logiki jest zblizony do sposobu w jaki ludzie myslg o Swiecie,

i mysli swe wyrazajg w zdaniach jezyka naturalnego. Czasami mowi sie kolokwialnie, ze
cztowiek mysli | logicznie”. Kategorie, ktérymi mysli i méwi cztowiek obejmuja takie
konstrukcje jak: obiekty, zwigzki miedzy obiektami (relacje), stwierdzenia faktéw
prostych i ztozonych, zdania, spdjniki zdaniowe, wyrazenia faktéw warunkowych,

a nawet kwantyfikatory.

Z drugiej strony, logika matematyczna dostarcza precyzyjnego aparatu wnioskowania
opartego na dowodzeniu twierdzen. Ludzie, myslac, réwniez stosujg podobne
wnioskowanie logiczne, zatem aparat logiki matematycznej wydaje sie dobra platforma
reprezentacji wiedzy agenta inteligentnego, ktérego sposob wyrazania faktéw

i wnioskowania bytby zblizony do ludzkiego.

Metody oparte na logice — reprezentacja wiedzy w jezyku logiki 2



Przyktad: swiat wumpusa

Do sprawdzenia dziaftania wielu metod przydatne jest Srodowisko testowe dostatecznie
proste, aby mozna byto intuicyjnie okresla¢ wtasciwe reprezentacje i sprawdzac proste
koncepcje, ale jednoczesnie dostatecznie bogate, aby pozwolito konfrontowac te
metody z coraz bardziej realnymi przeszkodami.

Jednym z takich testowych $rodowisk podrecznikowych jest $wiat wumpusa.! W tym
srodowisku porusza sie agent dazacy do znalezienia ztota (i bezpiecznego wyniesienia
go z jaskini). Na przeszkodzie stojg zapadliny (pits), w ktére agent moze wpas¢,

i potwér (tytutowy wumpus), ktéry moze agenta zjes¢.

Agent moze jedynie obracac sie w prawo lub w lewo, poruszac sie po jednym kroku do
przodu, wystrzeli¢ z tuku jedyng posiadang strzate (na wprost), podnies¢ ztoto, gdy je
znajdzie, i wyjs¢ z jaskini, jesli znajduje sie w punkcie startowym.

1przedstawione tu przyktady i diagramy $wiata wumpusa zaczerpniete zostaty z podrecznika Russella i Norviga , Arti-
ficial Intelligence A Modern Approach” i materiatéw udostepnionych na stronie internetowej Stuarta Russella.
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Agent otrzymuje pewne informacje o $rodowisku (dane otrzymywane z receptoréw
agenta nazywa sie perceptami): wyczuwa smréd wumpusa (stench) i powiew
powietrza z zapadlin (breeze), jesli znajduje sie w polu sasiadujgcym z nimi. Ponadto
zauwaza zfoto (gold), ale tylko jesli jest w tym samym polu co ono. Nie moze jednak
sprawdzi¢ swojej bezwzglednej pozycji (a /a GPS), moze jedynie sam swoja pozycje
rejestrowac. Sciany jaskini wyczuwa jedynie przez préby wejscia w nie, ktére powoduja
odbicia.
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Przyktad: poruszanie sie w Swiecie wumpusa
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Przyktfad: poruszanie si¢ w Swiecie wumpusa (cd.)
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Rachunek zdan: sktadnia i formuty poprawne formalnie (wff)

Logika zdan jest bardzo prostym jezykiem logicznym. Pozwala na pisanie formut
atomowych w oparciu o symbole zdaniowe. Piszac formute logiczng, stwierdzamy
pewien fakt. Przyktady formut atomowych: P, Q), R, WumpusAt_1_5, HaveGold.

Mozemy réwniez pisa¢ formuty ztozone, ktére s3 konstruowane z innych formut przy
uzyciu spojnikdéw logicznych: — (negacja), A (koniunkcja), V (alternatywa),
= (implikacja) i < (réwnowaznos¢) (ang. biconditional).

Formuty ztozone moga sktadac sie z innych formut ztozonych z uzyciem nawiaséw lub
bez nich, jesli nie s3 niejednoznaczne. Te zasady tworzenia wyrazen formalnie
poprawnych, zwanych well-formed formulas lub wffs, tworza razem sktadnie jezyka.

Przykfady wyrazen formalnie poprawnych Przyktady wyrazef niepoprawnych
(wff): formalnie (nie-wff):

(PAQ)V (=P A=Q) PAANQ

—— P P-Q

(AgentAt_1_1 A PitAt_1_2) = Breeze P(WumpusAt_1_5)

HaveGold vV —~HaveGold

HaveGold N —HaveGold Sprébuj wyjasnié¢, dlaczego te

wyrazenia nie sg wff.
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Rachunek zdan: semantyka

Sktadnia definiuje jezyk. W przypadku logiki zdan sktada sie ona z: zestawu symboli
zdaniowych (moga one by¢ dowolne), zestaw spéjnikéw logicznych (to w zasadzie tylko
te pie¢, ktére wprowadziliSmy) oraz reguty ich uzycia.

Skfadnia nie okresla znaczenia formut. To jest rola semantyki jezyka. Semantyka
nadaje znaczenie kazdemu z symboli zdaniowych. Po zdefiniowaniu znaczenia formuty
mozemy zacza¢ méwicC o tym, czy jest ona prawdziwa czy fatszywa. | to jest wtasciwym
celem reprezentacji logiczne;j.

Zauwaz, ze zapisaliSmy niektore symbole zdaniowe juz w taki sposéb, aby zasugerowac,
co maja oznaczac: AgentAt_1_1, PitAt_1_2, HaveGold. Inne symbole s3 po prostu
ogolne; mozna im przypisaé dowolne znaczenie, abstrakcyjne lub bardzo konkretne:

P.Q,R.

Jednak jezyk logiki musi by¢ elastyczny i bardzo ogolny — z samego zapisu symbolu
zdaniowego nigdy nie mozemy wnosiC co ona rzeczywiscie znaczy.
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Rachunek zdan: semantyka — swiaty mozliwe, interpretacje

Jesli skojarzymy formute (zapisang pojedynczym symbolem zdaniowym) Agent At_1_1
ze takim znaczeniem, ze agent $wiata wumpusa jest aktualnie na pozycji (1,1), to
nadal nie daje nam to mozliwosci sprawdzenia, czy formuta stwierdza prawde lub nie.
Jest catkiem mozliwe, ze w jednym konkretnym przypadku gry jest to prawda, podczas
gdy w wielu innych przypadkach jest fatszem.

Semantyka rozwigzuje ten problem przez powigzanie kazdej formuty atomowej ze
Swiatem mozliwym, ktory jest konkretng konfiguracja opisywanej dziedziny
problemowej, w ktorej wszystkie opisywane obiekty znajduja sie w scisle okreslonych
stanach. Odbywa sie to za pomoca funkcji interpretacji, ktéra wigze kazdg formute
atomowa (lub symbol zdaniowy) z okre$lonym znaczeniem w odniesieniu do takiego
Swiata mozliwego, a tym samym definiuje wartos¢ logiczng takiej formuty.

Wazne jest, aby funkcja interpretacji byta catkowicie zdefiniowana, tj. kazdy symbol
zdaniowy wystepujacy w jezyku byt powigzany z jakims$ aspektem Swiata mozliwego,
a odpowiadajgca mu formuta atomowa mogta by¢ jednoznacznie zinterpretowany jako
majaca wartos¢ 1 lub 0.
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Rachunek zdan: semantyka — interpretacje, modele

Interpretacja wykorzystujgca swiat mozliwy po lewej stronie przypisuje formule
AgentAt_1_1 warto$¢ prawdy 1 (czyli: Prawda), podczas gdy inna interpretacja
wykorzystujaca Swiat mozliwy po prawej przypisuje tej samej formule wartos¢ prawdy 0
(czyli: Fatsz):

A P W

Swiaty mozliwe s3 bardziej precyzyjnie okre$lane jako modele.

Zauwaz, ze lokalizacje wszystkich obiektéw (agenta, wumpusa, dziur), jesli s3 opisane
przez symbole zdaniowe jezyka, muszg byc okres$lone przez kazdy model, niezaleznie od
tego, czy agent Swiata wumpusa zna te lokalizacje, czy nie.

W tych modelach nie jest mozliwe np. posiadanie innego obiektu F', ktérego potozenie
mogtoby opisane formutami takimi jak F/At_2_2. Gdyby tak byto, wtedy powyzsze
konfiguracje nie bytyby modelami dla takiej dziedziny problemowej, poniewaz nie
odzwierciedlajg pofozenia obiektu F'.
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Rachunek zdan: semantyka — spetnianie formut

Majac konkretng formute zdaniowa, atomowa lub ztozong, niektére modele przypisuja
jej wartosc logiczng 1, podczas gdy inne przypisuja jej wartosc logiczng 0. Zauwaz, ze
nie ma innej opcji. Wszystkie obiekty opisane przez symbole zdaniowe sg obecne w
modelu, a wszystkie ich wfasnosci s3 tam odzwierciedlone.

Méwimy, ze model m spetnia formute f, jesli przypisze jej wartos¢ prawdy 1.
Powiemy rowniez, ze model m, ktéry spetnia formute f, jest modelem tej formuty.

Zwr6¢ uwage na inne znaczenie stowa: model. Dowolny model (dla okreslonej dziedziny
problemowej) moze spetniaé dang formute lub ja sfalsyfikowac¢. Ale jesli ja spetnia, to
jest modelem tej formuty.

Z definicji, jesli wzor spefnia wszystkie modele, to nazywamy ja tautologia.
Przyktadem tautologii jest PV —P. Jej warto$¢ logiczna nie zalezy od modelu — musi
miec przypisang wartos¢ logiczng 1 przy dowolnym modelu.

| odwrotnie, jesli formuta nie moze byc spetniony przez zaden model, to jest nazywana
niespetnialng. Przyktadem formuty niespetnialnej moze by¢ P A —P.
Jej wartosc prawdy réwniez nie zalezy od modelu — jest to stafa 0.
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Rachunek zdan: semantyka — spetnianie formut ztozonych

Zatrzymajmy sie na chwile, aby zwroci¢ uwage na istotny szczegot. Przede wszystkim
model definiuje prawdziwe wartosci wszystkich formut atomowych (symboli
zdaniowych). Majac to, wszystkie inne formuty (ztozone) maja swoje wartosci prawdy
okreslone przez semantyke konkretnych spojnikow logicznych.

Na przyktad zatézmy, ze model m przypisuje symbolowi AtAgent_1_1 wartos¢ 1.
Nastepnie rozwazmy formute —AtAgent_1_1. Nie mozemy wybra¢ dla niej dowolnej
wartosci prawdy; musimy przyjac, ze jego warto$¢ to 0. To samo dotyczy wszelkich
formut uzywajacych A,V itd. Wartosci prawdy wszystkich formut, ktére je zawieraja,
sg definiowane przez ich tabele prawdy.

Jednoczesnie chcielibysmy upewnic sie, ze model ten przypisuje 0 wszystkim formutom
(atomowym) typu: AtAgent_1_2, AtAgent_2_1, AtAgent 22, ... . Ale reguty logiki
zdan nie wymuszaja tego. Powyzsze formuty nie s3 w zaden sposob powigzane, wiec
model moze przypisa¢ im dowolne wartosci logiczne. Posiadanie ktorejkolwiek z nich
réwnej 1 ztamatoby zasady Swiata wumpusa (poniewaz powinien by¢ tylko jeden agent
i moze by¢ tylko w jednym miejscu na raz), ale z logicznego punktu widzenia nic ztego
by sie nie stato.
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Rachunek zdan: semantyka — funkcje interpretacji

W zasadzie funkcja interpretacji przypisuje formule atomowej jakis model (ktéry moze
by¢ modelem tej formuty lub nie). Istnieje wiele modeli (mozliwych $wiatéw), ktére
mozna rozwazac. Ale z punktu widzenia ustalania prawdziwosci formut wazne jest tylko
to, ktore symbole zdaniowe dane modele spetniajg, a ktore nie.

Poniewaz w okreslonej dziedzinie problemowej moze wystepowac tylko pewna liczba
symboli zdaniowych (okreslona liczba obiektéw i ich reprezentowanych wtasnosci), to
s3 tylko 2%V (IV - liczba symboli zdaniowych) typéw modeli ktére naprawde sie licza: te,
ktére spetniajg okreslony symbol, i te, ktore go falsyfikuja.

/ tego powodu, dla logiki zdan, czesto odrzucamy wielka réznorodnos¢ swiatéw
mozliwych i redukujemy zbior modeli do zbioru réznych zerojedynkowych N-krotek
kojarzacych wartosci prawdy ze wszystkimi symbolami zdan:

AgentAt_1_.1  WumpusAt_1_5

m 0 0
mo 0 1
s 1 0
Ty 1 1
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Rachunek zdan: semantyka — zbiory modeli

Bioragc pod uwage poprzednie uogolnienie, mozemy alternatywnie zaczaé patrze¢ na
formuty logiczne jako na zwarty sposob przedstawiania zbiorow modeli, a mianowicie
tych, ktére s3 modelami okreslonej formuty.

Na przyktad o formule AgentAt_1_1 mozna mysle¢ jako o reprezentacji wszystkich
modeli, w ktérych agent znajduje sie w pozycji (1,1).
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Rachunek zdan: kilka praw logicznych

Poniewaz dla danej (ztozonej) formuty interesuje nas przede wszystkim wyznaczenie jej
wartosci prawdy, moze byC korzystne korzystanie z pewnych przeksztafcen, ktore
mozna wykonaé na formutach logicznych z zachowaniem ich wartosci prawdy.

W ponizszych wzorach uzywa sie symbolu réwnowaznosci =, ktéry oznacza, ze

w procesie oceny prawdziwosci formuty jedna strona moze by zastgpiona przez drugj.

t3cznosc:

pA(gAT)

1l
< >
= =2

>
= =

VigVvr)

Ze wzgledu na tgcznosc zaréwno koniunkgji, jak i alternatywy, mozemy zapisa¢ wiele
kolejnych wystapien kazdego z tych spdjnikdw bez nawiaséw. Dzieje sie tak dlatego, ze
wartos¢ logiczna formuty z wielokrotnymi wystgpieniami ktéregos z tych spéjnikow nie
zalezy od kolejnosci, w jakiej spdjniki s3 interpretowane:

P1 Ap2 Ap3 A ...

pi A (P2 A(p3A(..)))
prV(p2V(psVI(..))

p1Vp2VpsV..
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Rozdzielczosc¢:

Prawa de Morgana:

Inne przydatne tozsamosci:

P=4q

pVyq
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Whioskowanie logiczne — wynikanie

Baza wiedzy (KB) jest zbiorem formut reprezentujacych koniunkcje wszystkich
formut sktadowych. Zbior modeli takiego zbioru jest przecieciem zbiorow modeli formut
sktadowych.

W sztucznej inteligencji bazg wiedzy jest zwykle baza danych wszystkich faktéw, ktore
posiada agent Al. Wiedza agenta Al jest w sposéb naturalny koniunkcja wszystkich
faktow z tej bazy. Typowym dziataniem agenta jest proba odpowiedzi na pytanie, czy
z taka bazg wiedzy obowiagzuje jakis inny fakt, reprezentowany np. przez formute f.

Moze sie zdarzy¢, ze w przypadku gdy wszystkie formuty ze zbioru KB s3 prawdziwe,
inna formuta f bedzie zawsze prawdziwa, przy wszystkich mozliwych interpretacjach.

Méwimy wtedy, ze f wynika logicznie z KB, co zapisujemy KB = f.

Na przyktad: {P,Q} F PAQ  {PAQ}EP {(PVQ-PIEQ {P=QPIEC

W logice zdan jednym ze sposobéw stwierdzania wynikania jest uzycie tablic prawdy.
W takiej tablicy wypisujemy wszystkie modele (przypisania prawdy dla symboli
zdaniowych) i sprawdzamy, czy wszystkie te modele, ktére spetniaja petng baze KB,
rowniez spetniajg f.
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Krotkie podsumowanie - pytania sprawdzajgce

Dla nastepujacych przyktadow odpowiedz czy zachodzi podane wynikanie logiczne.

1. {PVQ}E=PAQ

2. {PANQ} EPVQ

3. {PQ}EP=Q

4. {P,Q} E-PVQ

5. {P=Q,~Q} =P
6. {P=Q,~P}}E—-Q
7.{P=Q,~P}=Q

8. {P=Q,Q} =P

9. {P=Q, Q= R} ER
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Whioskowanie logiczne — modus ponens

W niektoérych przypadkach na formutach logicznych mozemy zastosowaé proces zwany
wnioskowaniem. Przyktad:

Pada deszcz. (PadaDeszcz)
Kiedy deszcz pana, szosa jest mokra. (PadaDeszcz=-SzosaMokra)
Whiosek: szosa jest mokra. (SzosaMokra)

Jest to przyktad reguty wnioskowania zwanej modus ponens:

Dla dowolnych symboli zdaniowych p i ¢:

D, P=4q
q
albo, bardziej ogdlnie:
Dla dowolnych pq, ..., ps, q:
Ply -+ Pk (D1A--Apr) =g
q
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Whioskowanie logiczne — reguty wnioskowania

Mozliwe sg inne reguty wnioskowania, ogolnie zapisane zgodnie ze schematem:

fi1, .-, [ (przestanki)
g (wnioski)

Reguty wnioskowania mozemy wykorzystaCc w procesie wnioskowania, stosujac je
sukcesywnie na formutach z bazy wiedzy, az do uzyskania pozadanego wniosku. Jest to
proces wnioskowania (ang. inferencji), a o kazdej formule f uzyskanej w tym
procesie méwi sie, ze jest wyprowadzona z KB, zapisywane KB I f.

Algorytm wnioskowania wprzad:

repeat until no change to KB:
foreach inference rule fl=/k

if f, .. fo e KBAg & KB
add g to KB

Jesli f zostanie ostatecznie dodana do KB, to KB - f.
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Wynikanie a wnioskowanie formut

Zauwazmy, ze proces wnioskowania dziafa scisle w domenie sktadni. Dziata na
formutach tak, jak s3 napisane i nie odnosi sie do modeli ani sprawdzania prawdziwosci.

Pojawia sie zatem pytanie:
Jak ma sie: KB |= f do: KBF f 7

Czy s3 one réwnowazne?
Czy mozna wyprowadzi¢ dowolng formute, ktora wynika logicznie?
A takze, czy dowolna wyprowadzalna formuta, wynika logicznie?
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Krotkie podsumowanie - pytania sprawdzajgce

Dla nastepujacych przyktadéow odpowiedz czy zachodzi podane wyprowadzanie.

Na poczatek przyjmij, ze jedyng reguta wnioskowanie jest modus ponens: W
W dodatku do krokéw wyprowadzania mozesz wykorzystac prawa réwnowaznosci
logicznej takie jak przedstawione na stronach 15 do 16 aby przeksztatci¢ formuty do

pozadanej postaci rownowaznej, zaréwno w zbiorze KB jak i po prawej stronie.

1. {P,Q}FPAQ

2. {PANQ} P

3. {PAQ}FPVQ
4. {P=Q,~Q}+—-P

Z kolei przyjmij, ze oprécz modus ponens mozesz dodatkowo uzy¢ nastepujacych regut
wnioskowania: 5 (eliminacja koniunkgji), oA (wprowadzenie koniunkgji), i VT
(wprowadzenie alternatywy).

Najpierw ponownie rozwigz powyzsze przykfady, a potem jeszcze nastepujace:

5. {P,Q}F P =Q

6. {-P,Q}FP=0Q

7.{P=Q,PVQ}FQ

8. {P=Q,P NR}FQAR
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Reguty wnioskowania: poprawnosc i kompletnos¢ regut

Reguta wnioskowania jest poprawna (ang. sound), jesli pozwala na wyprowadzenie

z dowolnej KB tylko takich formut, ktére wynikaja logicznie z tej KB. (Ale moze nie
wywodzi¢ WSZYSTKICH takich formut.)

Reguta wnioskowania jest kompletna, jesli pozwala na wyprowadzenie z dowolnej KB
WSZYSTKICH formut, ktére wynikaja logicznie z tej KB. (Ale moze réwniez wywodzi¢
inne formuty, ktére by¢ moze nie wynikaja logicznie z tej KB.)

Z powyzszego wynika, ze gdybySmy mieli regute wnioskowania, ktora bytaby zaréwno
poprawna, jak i kompletna, moglibySmy uzy¢ procesu wnioskowania, zamiast
sprawdzania wszystkich modeli (tablic prawdy).

Ale nie jest fatwo znalez¢ taka regute wnioskowania. Na przyktad, modus ponens jest
poprawna, ale nie jest kompletna. Aby to zobaczy¢, zauwazmy, ze w poprzednim
przyktadzie:

KB={PadaDeszcz, PadaDeszcz=-SzosaMokra}

byliSmy w stanie wyprowadzi¢ za pomoca modus ponens formute SzosaMokra, ale z tej
bazy wiedzy wynika logicznie réwniez (PadaDeszczAPadaDeszcz=-SzosaMokra), ktorej
nie mozna wyprowadzi¢ za pomoca reguty modus ponens.
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Reguty wnioskowania: poprawnosc¢ i kompletnosc¢ zbiorow
regut

Zatozmy, ze mamy wiecej niz jedng regute wnioskowania. Jak w tym przypadku dziata
poprawnos¢ /kompletnosé?

Powinno by¢ jasne, ze niezaleznie od tego, jak wiele regut wnioskowania rozwazymy,
chcemy, aby kazda z nich byta (indywidualnie) poprawna. Pojedyncza niepoprawna
reguta pozwolitaby algorytmowi wnioskowania na wprowadzenie do bazy wiedzy
sprzecznych wnioskow, niezaleznie od tego, co moga zaoferowac inne reguty.

] . . . . 1 b, g P, q
Przyktad: rozwaz dwie hipotetyczne reguty wnioskowania: vt v

Pierwsza jest poprawna, ale druga nie.

Jesli obie s3 obecne w systemie, algorytm wnioskowania bedzie musiat
wyprowadzi¢ zaréwno (p V q), jak i =(p V q). Bez wzgledu na to, ile istnieje
poprawnych regut wnioskowania, jedna nieprawidtowa reguta moze zepsuc caty
system, pozwalajac na wywnioskowanie fatszywej formuty.
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Reguty wnioskowania: poprawnosc¢ i kompletnosc¢ zbiorow
regut (cd.)

Kompletnos¢ to inna historia. Moze sie zdarzy¢, ze dla pewnego zbioru regut
wnioskowania {IR1,IRs, ..., IR,,} system wnioskowania bedzie w stanie z dowolnej KB
wyprowadzi¢ wszystkie formuty, ktére wynikaja logicznie z tej KB. Wtedy taki zbiér
regut wnioskowania bytby kompletny jako catos¢, nawet jesli ktorakolwiek, lub nawet
wszystkie z tych regut, moga z osobna nie by¢é kompletne.

Tak wiec jednym ze sposobow stworzenia systemu wnioskowania, w ktérym
wyprowadzenie formut byto rownowazne z wynikaniem logicznym, bytoby znalezienie
takiego zestawu poprawnych regut wnioskowania, ktore razem tworzytyby zbidr
kompletny.

Jest to mozliwe, ale jest tez inne rozwigzanie.
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Postac¢ Koniunkcyjna Normalna

Troche terminologii:

Literatem nazwiemy dowolng formute atomowa lub jej negacja.

Klauzule nazwiemy formute, ktéra jest alternatywa literatéw.

O formule, ktéra jest koniunkcjg klauzul bedziemy moéwi¢, ze jest w postaci
koniunkcyjnej normalnej (ang. Conjunctive Normal Form CNF).

Krétko mozemy powiedziec, ze formuta CNF jest koniunkcja klauzul.

Przyktady: [PV QV —-R)AN(PV -Q)AR],(PANQ),(PVQ),~P,P
Przyktady formut nie-CNF: (P = Q) A (Q = P),~(P A Q)

Fakt: dowolng formute rachunku zdan mozna przekonwertowac na rownowazng formute
w postaci CNF.

Formuty CNF s3 przydatne, poniewaz pozwalaja na wnioskowanie przy uzyciu rezolucji.

|, co rownie wazne, proces ten mozna catkowicie zautomatyzowac.
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Reguty wnioskowania: rezolucja

Korzystajac ze znanej i uzytecznej tozsamosci:
p=q9 =(pVa

mozemy przepisaC modus ponens do innej postaci:

p, TpVgq
q

Zauwaz, ze wyrazenia podswietlone na czerwono w pewnym sensie kasuja sie. Ma to
sens, poniewaz jesli wiemy, ze p jest prawdziwe, to —p jest z pewnoscig fatszywe
| mozna je usunac z alternatywy, otrzymujac q jako nowy wniosek.

Obserwacje te mozna uogdlni¢ do nastepujacej reguty wnioskowania zwanej rezolucja:

PV NVNp,Vg, 7qV1rV:.--Vry
P1V---Np,VriV---Vr,

Rezolucja moze by¢ uzywana jako jedyna reguta wnioskowania w poprawnym
i kompletnym systemie dowodzenia twierdzen.
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Whioskowanie logiczne z wykorzystaniem rezolucji —
przyktady

Rozwazmy kilka typowych schematéw wnioskowania logicznego. Zatézmy, ze ilekroé
wiemy, ze P, to rowniez () jest prawdziwe, a jesli () to takze R, jesli R to S, oraz jesli
S to takze T'. Zatdézmy, ze wiemy réwniez, ze prawda jest P. Wtedy powinnismy by¢
w stanie wywnioskowac wszystkie te fakty w wyniku szeregu zastosowan reguty
wnioskowania modus ponens. Zobaczmy, jak to dziata z postacia CNF i rezolucja.

Oryginalne fakty: P,P = Q,Q = R, R=5.5=T

Te same fakty w postaci CNF i graficzna reprezentacja P\ﬁPVQ ~“QVR -RVS —-SVT
tancucha krokéw wnioskowania rezolucji: Q<

(Zauwaz, ze w postaci graficznej tancuch R\

krokéw wnioskowania tworzy rodzaj drzewa. S N

Jest to typowe.) 7

W powyzszym schemacie wnioskowania wszystkie kroki wykonywane na klauzulach
CNF moga byc¢ réwnie dobrze wykonane z reguta modus ponens na oryginalnych
formutach implikacyjnych. Jednak nie zawsze dziata to w taki sposob.
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Rozwazmy inny schemat rozumowania. Zatézmy, ze znanych jako prawdziwe jest kilka
faktow: P, Q), R, S. Zaté6zmy dalej, ze wszystkie te fakty razem wziete implikuja 7.

Originalne fakty: P,Q, R, S,(PAQANRANS)=T.
Fakty w postaci CNF: P, Q, R, S, (-PV —-QV RV -5VT).

—|P\/—|Q\/—|R\/—|S\/T

ﬁP\/ﬁQ\/ﬁR\/T
\ /

The resolution tree: ~PV-QVT
ﬂP\/T

Tym razem wnioskowanie koncowej formuty T nie mogto by¢ uzyskane za pomoca
modus ponens. W tym celu musielibysmy najpierw otrzymac formute P A Q A R A S,
ktora wynika ze zbioru pierwotnych faktéw, ale za pomoca modus ponens wyprowadzic
jej sie nie da. Tak samo zresztg nie mozna tego zrobi¢ za pomoca rezolucji. Rezolucja
udato sie wyprowadzi¢ 1" z postaci CNF oryginalnych faktéw, ale nie uda sie
wyprowadzi¢ prostej koniunkcji oryginalnych faktéw, poniewaz rezolucja moze tworzyc
wnioski tylko przez potaczenie dwoch klauzul ze skasowanymi literatami konfliktowymi.

Aby méc wyprowadzi¢ formuty takie jak powyzsza koniunkcja, musimy uzy¢ rezolucji
w specjalny sposob.
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Puste klauzule

O pojedynczym literale mozemy moéwic¢ jak o klauzuli unarnej, czyli o alternatywie tylko
tego jednego literatu. Ponadto dopuszczamy puste klauzule, ktére sg traktowane jako
alternatywy zero literatéw. Mozna to wyjasni¢ za pomoca notacji funkcyjnej dla
alternatywy, dzieki asocjacyjnosci:

pVpV..Vp, = V(p,p2,-...,Dn)
pVqgVvr = V(pgq,r)
pVaqg = Vipq)
p = V(p)
b = V()

O ile prawdziwo$¢ dowolnej klauzuli niepustej zalezy od prawdziwosci jej sktadnikow, to
klauzula pusta musi miec statg interpretacje logiczng. Przez proste uogdlnienie definicji
wartosci logicznych alternatywy mozemy otrzymadé, ze klauzula pusta jest formuta
fatszywa (niespetnialng). Poniewaz bedziemy musieli postugiwacl sie pusta klauzula

w notacji logicznej, do jej oznaczenia uzywamy symbolu O.

Klauzula pusta moze by¢ traktowana jako element neutralny dla spojnika alternatywy:

Ovp = p = pvid
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Whioskowanie nie-wprost oparte na rezolucji

Poprawny i kompletny system dowodzenia twierdzen moze by¢ stworzony przy uzyciu
rezolucji w procesie wnioskowania nie wprost (refutation reasoning). Aby uzyskac:

KBF f

dodajemy negacje formuty twierdzenia —f do zbioru K B i — majac nadzieje, ze jest
to teraz niespdjny zbior formut logicznych — sprobujmy wyprowadzi¢ formute
niespetnialng (fatszywa). Zaktadajac, ze oryginalny K B jest spetnialny, jedynym
zrédtem niespetnialnosci moze by¢ dodana formuta (—f), a to dowodzi prawdziwosci f.

Poniewaz system wnioskowania oparty na rezolucji dziata z klauzulami, wynikiem tego
procesu nie wprost bedzie pusta klauzula. Jesli mozna j3 uzyskac, dowdd jest
kompletny. Jesli nie da sie uzyskaé klauzuli pustej, wtedy twierdzenie, ktére
prébowalismy udowodni¢, musi by¢ fatszywe (w logice zdan).

Zauwazmy jednak, ze niepowodzenie wyprowadzenia klauzuli pustej samo w sobie nie
jest dowodem fatszywosci twierdzenia, podobnie jak nieumiejetnos¢ znalezienia dowodu
nie oznacza, ze takowy nie istnieje. Ale jesli poszukiwanie pustej klauzuli jest
prowadzone w systematyczny sposob i jest zupefne, na przyktad przez zapewnienie, ze
wyprobowane zostaty wszystkie mozliwe kroki wnioskowania w rozwigzaniu, wtedy
wniosek, ze twierdzenie jest fatszywe, moze by¢ poprawnie sformutowany.
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Whioskowanie nie wprost z wykorzystaniem rezolucji —
przyktad

Dla prostej ilustracji dowodu nie wprost z wykorzystaniem rezolucji rozwazmy
poprzedni przypadek posiadania w bazie danych czterech faktéw: P, (), R, S i proby
wyprowadzenia ich koniunkcji: P A Q) A R A\ S. Wyprowadzenie:

{P,Q,R,S}F (PANQARAS) nie jest mozliwe ani przez modus ponens, ani przez
rezolucje uzywang w sposéb bezposredni.

Prébujac rezolucji nie wprost, negacja twierdzenia okazuje sie by¢ pojedyncza klauzula:
PV -QV-RV-S. A kolejnos¢ krokéw prowadzacych do pustej klauzuli jest prosta:

ﬁPvﬁQvﬁRvﬁS
ﬁPvﬂQvﬁR
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Krotkie podsumowanie — pytania sprawdzajace

Dla ponizszego zestawu formut napisz wszystkie mozliwe do uzyskania rezolwenty.

Jesli nie mozna wykonac zadnego kroku rezolucji, podaj krotkie wyjasnienie.
Porownaj obliczone rezolwenty z logicznymi konsekwencjami, ktore mozesz
wyprowadzic intuicyjnie z podanych formut.

Zwro¢ uwage na przecinki, aby poprawnie zidentyfikowac formuty w zbiorach.

1. {PVvQ@, -PV-Q}

2. {P=0Q,Q=R}

3.3. {- P=Q,Q=R}

4. {PVQVR,-PVQVR}
5. {PVQVR, -PV-QV-R}
6. { PVQ, PVv-Q, -PVvQ}
7.{P=(QVR), -QN—-R}

8. {P=Q,R=Q, PVR}
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Rachunek predykatow pierwszego rzedu — termy

Termy reprezentuja w jezyku logiki obiekty, i moga by¢: statymi (oznaczaja konkretny
obiekt), zmiennymi (moga przybieral wartosci réznych obiektéw), lub funkcjami
(wyznaczaja jaki$ obiekt na podstawie wartosci swoich argumentdw, inaczej, przypisuja
jednym obiektom inne).

Przyktady terméw: A, 123, z, f(A), f(g(x)), +(z,1)
Umownie zapisujemy termy state wielkimi literami, a zmienne matymi.

Zauwazmy, ze w powyzszych przyktadach ostatni term jest niejawnym zapisem
nastepnika x, a nie operacjg odejmowania. W czystej logice nie ma odejmowania.
Bedziemy mieli do czynienia z tym problemem w wielu sytuacjach.
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Rachunek predykatow pierwszego rzedu — predykaty

Predykaty reprezentuja relacje na zbiorze terméw. Mozemy je traktowac jako funkcje
majace wartos¢ prawdy lub fatszu (1 lub 0), ktére przypisuja prawde kazdej n-ce
termdw spetniajacych relacje, a fatsz kazdej n-ce niespetniajacej.

Zapis predykatu z zestawem termdéw nazywamy formuta atomowg.
Przyktady formut atomowych: P, Q(A), R(x, f(A)), > (x, 10)

Zapis funkcyjny: > (x,10) jest odpowiednikiem relacji: x > 10. W arytmetyce
potraktowalibySmy taki zapis jako nierownosc i moglibySmy ja rozwigzywac. Natomiast
formuty logiczne mozemy jedynie wartosciowac, to znaczy wyznaczac ich wartosc
logiczng prawdy lub fatszu. Gdy formuta zawiera zmienng to czesto nie da sie
wyznaczy¢ jej wartosci logiczne;.
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Reprezentacja faktéw za pomocg formut

Jaki sens ma jezyk logiki predykatow?

Mozemy przy jego uzyciu opisaé fakty, ktére chcemy wyrazié, np.:

At(Wumpus, 2, 2)
At(Agent,1,1)
At(Gold, 3, 2)

Wybor zestawu symboli, ktérymi zamierzamy opisac obiekty i relacje pewnego Swiata,
nazywamy konceptualizacjg. Na przyktad, alternatywna do powyzsze;
konceptualizacja Swiata wumpusa mogtaby zawiera¢ formuty:

AtWumpus(loc(2,2))
AtAgent(loc(1,1)
AtGold(loc(3,2))

Powyzsze konceptualizacje s3 podobne, aczkolwiek maja nieco odmienne wtasciwosci,
np. w drugiej wumpus, agent, ani ztoto nie wystapiag w jawnej postaci. Ogdlnie od
przyjetej konceptualizacji moze zaleze¢ tatwos¢, a nawet mozliwo$¢ wyrazania réznych
faktow o dziedzinie problemowe;.
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Reprezentacja faktéow za pomocg formut (cd.)

Przyktadem problemu konceptualizacyjnego Swiata wumpusa jest opis istnienia
| potozenia dziur. Mozemy nadac¢ dziurom prawa obywatelskie i tozsamosc:

At(Pity, 3,3)

W ten sposdb mozemy fatwo opisacC caty swiat widziany z lotu ptaka, nadajac
poszczegdlnym dziurom dowolnie wybrane nazwy (termy state). Z punktu widzenia
agenta poruszajacego sie w Swiecie wumpusa ta konceptualizacja jest jednak bardzo
niewygodna. Trudno bytoby w ten sposdb opisac Swiat stopniowo poznawany, gdy na
poczatku agent nie zna nawet liczby dziur. Istnienie dziury trzeba wtedy opisac
zmienny:

At(z, 3,3)
Jednak z tego zapisu nie wynika, ze x jest dziurg i wymaga to uzupetniajacych opisow.
Wygodnga alternatywa jest postrzeganie dziur jako anonimowych, i tylko zapisywanie
faktow istnienia lub nieistnienia dziur w konkretnych miejscach:

PitAt(3,3)
1

NoPitAt(1,1)
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Spojniki logiczne i formuty ztozone

Formuty ztozone jezyka predykatéw pierwszego rzedu mozna konstruowac za
pomoca spojnikow logicznych takich jak: =, A, V, =, <. Jako szczegolny
przypadek, formute ktora jest formuta atomowa lub negacja formuty atomowe;
nazywamy literatem.

Przyktady formut ztozonych (pierwsza jest pojedynczym literatem):

—At(Wumpus, 1,1)
PitAt(2,1) Vv PitAt(1,2)
[At(Agent, 1,1) A PitAt(2,1)] = Percept(Breeze)

Zauwazmy, ze ostatnia formuta jest zupetnie innej natury, niz dwie pierwsze. Dwie
pierwsze formuty moga stanowi¢ fragment opisu $wiata otrzymanego i/lub
budowanego przez agenta inteligentnego w trakcie jego pracy w Swiecie wumpusa.
Natomiast ostatnia formuta wyraza jedno z praw Swiata wumpusa. Agent zna to
prawo, i moze posiadaé taka formute w swojej bazie wiedzy.

Fakty ogolnie stuszne w danej dziedzinie problemowej nazywamy aksjomatami
Swiata. Natomiast fakty opisujace stan konkretnej instancji problemu, nazywamy
incydentalnymi.
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Kwantyfikatory

Formuty ztozone mozna réwniez budowaé za pomoca kwantyfikatorow: V, 4, ktore
wiazg zmienne w formutach. Ogdlny schemat formuty z kwantyfikatorem:

VrP(x)
Zmienng niezwigzang kwantyfikatorem w formule nazywamy wolng. Formuta:

FyQ(z,y)

zawiera dwie zmienne, jedng wolng, a druga zwigzang kwantyfikatorem.

Zdaniem nazywamy formute bez wolnych zmiennych.

Przyktady:

dx,y At(Gold, x,y)
Va,y [At(Wumpus, z,y) N At(Agent, x,y)| = AgentDead
Va,y [At(Wumpus, z,y) N At(Agent, —(x,1),y)| = Percept(Stench)

Zwrbéémy uwage, ze w ostatnim przyktadzie —(x, 1) jest niejawnym zapisem
wspotrzednej na lewo od x, a nie odejmowaniem. W logice nie ma odejmowania.
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Krotkie podsumowanie — pytania sprawdzajace

1. Opracuj kompletng konceptualizacje Swiata wumpusa w rachunku predykatow
pierwszego rzedu. To znaczy: wprowadz symbole terméw (statych i funkgji
termowych), oraz symbole predykatéw niezbedne do opisywania instancji probleméw
w tej dziedzinie.

Uwaga: nie rozwazamy procesu poszukiwania rozwigzania, analizy alternatywnych
ruchéw i ich skutkow, opisywania sekwencji krokow, itp. Poszukujemy jedynie
formatu pozwalajacego na statyczny opis stanu zagadnienia, tzw. snapshot.

2. Wykorzystujac reprezentacje opracowang w poprzednim punkcie, opisz instancje
problemu przedstawiong na stronie 4.

3. Sprébuj zapisa¢ aksjomatyke Swiata wumpusa, to znaczy: ogdlne reguty rzadzace
tym Swiatem.
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Przeksztatcanie formut logicznych do postaci klauzulowej

Formute bez zmiennych wolnych mozemy przeksztatfci¢ do postaci klauzulowej
(inaczej: prenex) gdzie wszystkie kwantyfikatory zapisane s3 przed formuta:

(i) przemianuj zmienne zwigzane kwantyfikatorami na unikalne,

(ii) zastgp koniunkcjami i alternatywami pozostate spéjniki logiczne,
(iii) przesun negacje do wewnatrz formut (do symboli predykatéw),

(iv) wyodrebnij kwantyfikatory poza formufe,

(v) przeksztat¢ formute do postaci koniunkcyjnej (CNF),

(vi) zastap wszystkie kwantyfikatory egzystencjalne funkcjami Skolema.

Pierwsze pie¢ krokéw sa réwnowaznosciowymi przeksztatceniami logicznymi (przy
zachowaniu wtasciwe] kolejnosci wyodrebnianych kwantyfikatoréw w kroku (iv)). Krok
(vi), tzw. skolemizacja, polega na zastapieniu formut postaci:

Vajl\v’xQVaZnﬂy @(331, L2y weey Ly y)

formuta
Vo Vo, Vo, (21, v, ..., T, fy(21, T2, .y 20))

gdzie f, jest nowo wprowadzonym symbolem funkcyjnym zwanym funkcjg Skolema.
(W przypadku braku kwantyfikatoréw V bedzie to stata Skolema.)
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Twierdzenie Skolema

Ostatni krok w algorytmie przeksztatcenia formuty do postaci klauzulowej nie jest
rownowaznos$ciowym przeksztatceniem logicznym. To znaczy, dla oryginalnej formuty
logicznej ®, i otrzymanej w wyniku przeksztatcenia jej postaci klauzulowej ¢/,

w ogdlnosci ¢ £ .

Zachodzi jednak nastepujaca wtasno$é, zwana twierdzeniem Skolema: dla
zamknietej formuty @, jesli O’ jest jej postacia klauzulowa, to ® jest spetnialna wtedy
i tylko wtedy gdy @’ jest spetnialna.

Zatem, o ile nie mozemy w ogdlnosci postugiwaé sie postacia klauzulowa @’ zamiast
oryginalnej formuty ®, to jednak mozemy postugiwac sie t3 postacia
dla celéw dowodzenia spetnialnosci (lub niespetnialnosci).

Istnieje niezwykle przydatny schemat wnioskowania, wykorzystujacy formuty w postaci
klauzulowej, zapisywane czesto w postaci zbioru (lub listy) klauzul, gdzie poszczegdlne
klauzule sg zapisane w postaci zbioréw (lub list) literatéw.
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Krotkie podsumowanie — pytania sprawdzajace

Przeksztat¢ do postaci prenex nastepujace formuty rachunku predykatéw:

1. Vz [(P(z) = Q(z)) A (P(x) = R(x))]

2. Vx [(P(x) ANQ(x)) V (R(x) AN S(x))]

3. Vady [P(x) = Q(x,y)]

4. JaVy [P(x,y) = Q(A, x)]

5. Va3dy [P(z,y) = Qy, [(y))]
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Podstawienia zmiennych w formutach

Bedziemy rozwazali przeksztatcenia formut polegajace na zastepowaniu zmiennych

w formutach innymi wyrazeniami (termami). Poniewaz zmienne w formutach w postaci
prenex domyslnie zwigzane s3 kwantyfikatorami uniwersalnymi, zastepowanie
zmiennych innymi termami oznacza branie szczegdlnych przypadkow formuty.

Podstawieniem (substitution) nazwiemy zbidr odwzorowan okreslajacych termy
podstawiane pod poszczegolne zmienne. Podstawiane termy nie mogg zawierac
zastepowanej zmiennej. Przyktad podstawienia: s = {z — A,y — f(2)}.

Wykonanie podstawienia polega na syntaktycznym zastgpieniu wszystkich
wystapien danej zmiennej w formule zwigzanym z nig termem. Wszystkie zastgpienia
wykonywane s3 jednoczesnie, czyli wynikiem wykonania podstawienia

s ={x — y,y — A} na termie f(z,y) bedzie term f(y, A).

Zauwaz, ze w ten sposob nie ma znaczenia w jakiej kolejnosci zmienne sg zastepowane,
pomimo iz podstawienie jest zbiorem (nieuporzagdkowanym).
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ZYozeniem podstawien s; i sy (zapisywanym: s1s9) nazwiemy podstawienie uzyskane
przez zastosowanie podstawienia sy do terméw z sq, oraz dopisanie do otrzymanego
zbioru wszystkich par z sy ze zmiennymi nie wystepujacymi w s;.

c138182 = <(I)31)82

81(8283> = <8182)83
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Unifikacja

Unifikacjg nazywamy takie podstawienie terméw pod zmienne w zbiorze formut, aby
sprowadzi¢ wszystkie formuty w zbiorze do identycznych (lub réwnowaznych logicznie,
patrz wyjasnienie nizej) formut, czyli zbioru singletonowego.

Unifikator zbioru formut to jest podstawienie redukujace zbiér do
jednoelementowego. Zbidr jest unifikowalny jesli istnieje jego unifikator.

Na przyktad: zbiér {P(x), P(A)} jest unifikowalny, i jego unifikatorem jest
s ={xr— A}

Podobnie, zbiér { P(x), P(y), P(A)} jest unifikowalny, a jego unifikatorem jest
s={z— A y— A}

Zbior { P(A), P(B)} nie jest unifikowalny, podobnie jak zbiér { P(A), Q(x)}.
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Unifikacja (cd.)

Unifikacja jest ogdlng procedurs, ale tutaj bedziemy wykonywac unifikacje wytacznie
na zbiorach klauzul. Rozwazmy ponizsze, przyktadowe zbiory klauzul:

& = {PVQ(z),PVQA),PVQy)}
U = {PVQ),PVQA),PVQ(fiy)
0 = {PVQ(z),PVQA)VQy)}

Zbior @ jest unifikowalny, jego unifikatorem jest s = {x — A,y — A},
a zunifikowanym zbiorem jest singletonowy zbiér &s = {P V Q(A)}.

Zbiér U nie jest unifikowalny.

Zbiodr () jest bardziej skomplikowanym przypadkiem. Stosujac czysto syntaktycznag
unifikacje, nie jest on unifikowalny, bo po wykonaniu samego podstawienia formuty
nie s3 identyczne. Jednak stosujac semantyczng unifikacje, jest on unifikowalny,
poniewaz po wykonaniu podstawienia formuty s3 logicznie rownowazne. Bedziemy
dopuszczali unifikacje semantyczng z zastosowaniem tgcznosci i przemiennosci
alternatywy.
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Najogélniejszy unifikator (mgu)

Najogolniejszym unifikatorem unifikowalnego zbioru formut, albo mgu (most
general unifier), nazywamy najprostszy (minimalny) unifikator dla tego zbioru.

Dla unifikowalnego zbioru formut zawsze istnieje jego mgu, a dowolny unifikator dla
tego zbioru mozna otrzymacé przez ztozenie mgu z jakims innym podstawieniem.
Algorytm unifikacji pozwala wyznaczy¢ mgu zbioru formut.
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Krotkie podsumowanie — pytania sprawdzajace

Dla ponizszych zbioréw klauzul odpowiedz, czy dany zbidr jest unifikowalny. Jesli tak,
to podaj jego unifikator. Sprobuj poda¢ zaréwno mgu, jak i inny unifikator, ktory nie
jest mgu. Jesli zbidr nie jest unifikowalny, to krétko uzasadnij dlaczego.

Zwro¢ uwage na przecinki, aby prawidtowo odczytaé formuty w zbiorach.

1. {P(x), P(f(z))}

2. {P(x,y) ,P(y,z)}

3. {P(z,y), Ply, [(x))}
4. {P(z,y) ,P(y, f(y))}

5. {P(x,y) , Py, 2) , P(z, A)}
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Rezolucja — przypadek ogodiny

Rezolucja w ogdlnym przypadku: gdy dla dwdch klauzul (zbioréw literatéw) {L;}
i {M,;} istnieja ich podzbiory {l;} i {m;}, zwane literatami kolidujacymi, takie, ze
zbiér {1;} U {—m,} daje sie zunifikowal i s jest jego mgu, wtedy ich rezolwenta jest

zbiér [{L;} — {l;}|s U [{M;} — {m;}]s.

Moga istnie¢ rézne rezolwenty danych klauzul dla réznych wyboréw podzbioréow ich
literatow. Na przykfad, rozwazmy nastepujace klauzule:

Plz, f(A)]V Plz, f(y)] vV Q(y) oraz =Pz, f(A)]V ~Q(2)

Wybierajac {l;} = {P|z, f(A)]} oraz {m;} = {—=P|z, f(A)]} otrzymujemy

rezolwente:
Plz, f(y)] v -Q(z) vV Q(y)

Natomiast wybierajac {l;} = {P|z, f(A)], Plz, f(y)|} oraz {m;} = {—P|z, f(A)]}

otrzymujemy:
Q(A) vV -Q(z)
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Krotkie podsumowanie — pytania sprawdzajace

Dla ponizszych zbioréw klauzul, zapisz wszystkie mozliwe do otrzymania rezolwenty.
Dla kazdej rezolwenty zanotuj, z ktorych klauzul zostata otrzymana, i jakie byto
zastosowane podstawienie. Jesli nie jest mozliwe wykonanie rezolucji, to wyjasnij

dlaczego nie.
Zwro¢ uwage na przecinki, aby prawidtowo odczytaé formuty w zbiorach.

L {=P(x)VQ(z) , P(A)}
2. {=P(z)vQ(z), ~Q(z)}
3. {=P(x)VQ(x), P(f(x)), ~Qx)}

Metody oparte na logice — rezolucja 54



Rezolucja jako reguta wnioskowania

Rezolucja jest poprawng reguta wnioskowania poniewaz klauzula otrzymana z pary
klauzul w wyniku zastosowania rezolucji, wynika z nich logicznie. Jednak nie jest
kompletna, to znaczy nie mozemy z jej pomoca wygenerowac z danej formuty A
kazdego wniosku ¢, takiego ze A F .

Na przyktad, dla A = {P,Q)} nie mozemy rezolucja wywie$¢ formut PV @ ani P A Q),
adla A ={VzR(z)} nie mozemy wywies¢ formuty JxR(x).

Jednak jesli zastosujemy rezolucje w procedurze dowodzenia nie wprost, czyli przez
zaprzeczenie tezy i wyprowadzenie sprzecznosci, reprezentowanej przez klauzule pusta
(oznaczang O), to mozemy udowodni¢ nig kazde twierdzenie. Zatem w tym sensie
rezolucja jest kompletna (refutation complete).

Rozwazmy powyzsze przyktady. Dla A = {P, ()} zaprzeczeniem formuty PV () s3
klauzule =P i —=() i kazda z nich pozwala natychmiast wygenerowa¢ klauzule pusta
z odpowiednig klauzulg z A. Zaprzeczeniem formuty P A () jest klauzula =P V —()
i mozemy uzyskaé klauzule pusta w dwéch krokach rezolucji. Dla A = {VzR(z)}
zaprzeczeniem formuty Jx R(x) jest = R(y), ktéra unifikuje sie z klauzula R(z)
otrzymang z A i daje klauzule pusta w jednym kroku rezolucji.
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Dowodzenie twierdzen oparte na rezolucji

Podstawowy schemat wnioskowania opartego na rezolucji, gdy posiadamy zbior
aksjomatoéw A i chcemy z niego wywies¢ formute ¢, jest nastepujacy. taczymy zbiory
klauzul otrzymanych z A i =, i prébujemy wywies¢ sprzecznos¢ (klauzule pusta)

z otrzymanego tacznego zbioru klauzul, przez zastosowanie rezolucji na kolejnych
parach wybranych klauzul. W tym procesie uzyskana w biezgcym kroku rezolucji nowa
klauzula zostaje kazdorazowo dofaczona do gtéwnego zbioru klauzul, i procedura jest
powtarzana.

Podstawowy wynik logiki matematycznej tu wykorzystywany jest nastepujacy. Jesli
uruchomimy rezolucje na zbiorze klauzul otrzymanym z niespetnialnej formuty,

z jakim$ systematycznym algorytmem generowania rezolwent, to w pewnym momencie
otrzymamy klauzule pusta. | na odwrét, jesli ze zbioru klauzul otrzymanego z jakiejs
formuty mozna procedura rezolucji wygenerowac klauzule pustg, to ten zbior klauzul,
ale takze oryginalna formuta, s3 niespetnialne. Obejmuje to réwniez klauzule otrzymane
w wyniku skolemizacji, a wiec jest zarazem potwierdzeniem poprawnosci tej procedury.
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Dowodzenie twierdzen: przyktad

Wiadomo, ze:

1. Kto potrafi czytaé ten jest oSwiecony. (Va)[R(x) = L(x)

2. Delfiny nie s3 o$wiecone.
3. Niektére delfiny s3 inteligentne.

(V) D(z) = ~L()]
(3)

z)[D(z) A ()]

Nalezy udowodni¢ twierdzenie:

4. Sa tacy inteligentni co nie potrafig czyta¢. (Jz)|I(z) A ~R(x)]

Po konwersji do postaci prenex CNF otrzymujemy klauzule:

Cl:  —=R(u)V L(u)
C2:  —=D(v)V ~L(v)
C3a: D(A)

C3b:  I(A)

NT: —I(w)V R(w)

Z kolejnych krokow rezolucji otrzymujemy:

C5: R(A)
C6: L(A)
C7:.  —=D(A)
c8: O

z pierwszego aksjomatu
z drugiego aksjomatu
z trzeciego aksjomatu, cz.1

C3a C2 C1 C3b NT

=A
z trzeciego aksjomatu, cz.2 G5
z negacji twierdzenia /
C6

v=A
rezolwenta klauzul C3b i NT /
rezolwenta klauzul C5 i C1 Cr
rezolwenta klauzul C6 i C2 /
rezolwenta klauzul C7 i C3a C8=0
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Dowodzenie twierdzen: powazniejszy przyktad

Rozwazmy przyktad z matematyki.? Chcemy udowodnié, ze przekréj dwéch zbioréw
zawiera sie w dowolnym z nich. Zaczynamy od wypisania aksjomatéw, z ktorych
rozumowanie bedzie musiato korzysta¢. W tym przypadku s3 to definicje pojec
przekroju i zawierania sie zbiorow.

VaVsVt (r€s N x€t)s xesnt
VsVt Vrrxes=axet)=sCt

Formuta do udowodnienia:
VsVt sNt C s

2Przyk’rad zapozyczony z ksigzki Geneseretha i Nilssona , Logical Foundations of Artificial Intelligence”.
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Po przetworzeniu do postaci klauzul otrzymujemy:

1. {x€s,xdt,xe€snt} zdefinicji przekroju
2. {z&snt,xe s} z definicji przekroju
3. {x&snt,xet} z definicji przekroju
4. {F(s,t)€s,s Ct} z definicji zawierania sie
5. {F(s,t)&t,s Ct} z definicji zawierania sie
6. {ANBZ A} Z zaprzeczenia tezy

Zauwazmy funkcje Skolema w klauzulach 4 i 5, oraz state Skolema w klauzuli 6. Dalej
nastepuje wywdd prowadzacy dosy¢ prosto do klauzuli puste;j.

7. {F(ANB,A)e€ ANB} zklauzul 4.i 6.
8. {F(ANB,A) ¢ A} z klauzul 5. i 6.
9. {F(ANB,A)ec A} z klauzul 2.1 7.
10. {} z klauzul 8. i 9.

To koniec dowodu. Cel osiggniety. Troche trudno poczué satysfakcje jaka zwykle
towarzyszy osiagnieciu tradycyjnego dowodu matematycznego. Rowniez aby przesledzic
rozumowanie i np. je sprawdzic, trzeba sie troche napracowaé, aczkolwiek w przypadku
tego dowodu jest to jeszcze wzglednie proste.
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Krotkie podsumowanie — pytania sprawdzajace

Dla podanych ponizej zbioréw aksjomatow A i formuty o, sprébuj udowodni¢ A = ¢
metoda rezolucji nie wprost. Zacznij od zaprzeczenia formuty celowej, nastepnie
z otrzymanego zaprzeczenia i zbioru aksjomatow utworz podstawowy zbior klauzul.

1. A = {Vx(Lubi(x, Wino) = Lubi(Rychu, z)), Lubi(Zdzich, Wino)}
¢ = Lubi(Rychu, Zdzich)

2. A = {Vz(Lubi(z, Rychu) = Lubi(Rychu, x)), —Lubi(zona(Zdzich), Rychu)}
¢ = Lubi(Rychu, zona(Zdzich))

3. A = {Vz(Lubi(z, Wino) = Lubi(Rychu, x)), Lubi(Zdzich, Wino) }
¢ = (Lubi(Rychu, Zdzich) Vv Lubi(Rychu, zona(Zdzich))

4. A = {Vx(Lubi(x, Wino) = Lubi(Rychu, x)), Lubi(Zdzich, Wino)}
¢ = (Lubi(Rychu, Zdzich) A Lubi(Rychu, zona(Zdzich))
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Inzynieria wiedzy

Przedstawiony formalizm logiki predykatow pierwszego rzedu, wraz z rezolucja jako
metoda dowodzenia twierdzen nie wprost, pozwala na budowe inteligentnych agentéw
efektywnie rozwigzujgcych stawiane im problemy. Budowa takiego agenta wymaga
konstrukcji reprezentacji, ktorg mozna sformutowaé w postaci nastepujgcego procesu,
zwanego inzynierig wiedzy:

identyfikacja problemu
okreslenie zakresu pytan, na ktore agent bedzie musiat znajdowac odpowiedzi,
rodzaju faktéw, ktérymi bedzie mogt sie postugiwac, itp.; na przyktad,
w odniesieniu do Swiata wumpusa, musimy okresli¢, czy agent ma umie¢ planowac
dziatania, czy np. tylko tworzyc reprezentacje stanu $wiata rozpoznanego
w dotychczasowych dziataniach?

pozyskanie wiedzy
twdrca oprogramowania agenta (inzynier wiedzy) moze nie rozumie¢ wszystkich
niuansOw opisywanego Swiata, i musi wspotpracowac z ekspertami aby pozyskaé
cafg niezbedna wiedze
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definicja sfownika reprezentacji
pojecia i obiekty z dziedziny problemowej muszg zostaé opisane formutami

logicznymi; konieczne jest zdefiniowanie stownika predykatow i termow, tzn. funkcji

termowych oraz statych; ten etap moze sie okazac kluczowy dla zdolnosci do

efektywnego rozwigzywania problemoéw, np. w swiecie wumpusa, czy zapadliny lepiej

przedstawi¢ jako obiekty, czy wtasnosci miejsc

kodowanie wiedzy ogolnej
kodowanie aksjomatow zawierajgcych ogdlng wiedze o dziedzinie problemowe;,
regutach rzadzacych Swiatem, istniejgcych heurystykach, itp.

kodowanie wiedzy szczegolnej
zapis konkretnego problemu do rozwigzania przez agenta, w tym zadanych mu
faktow o konkretnych obiektach, oraz postawionego zadania jako pytania do
odpowiedzenia lub, ogdlniej, twierdzenia do udowodnienia

przedstawienie zapytan do urzadzenia wnioskujgcego
uruchomienie procedury dowodzenia na skonstruowanej bazie wiedzy + faktach
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debugowanie bazy wiedzy
niestety, podobnie jak w przypadku zwyktych programow, rzadko kiedy
skonstruowany system bedzie od razu poprawnie dziatat; mogg zdarzycC sie takie
problemy, jak brak kluczowych aksjomatéw, albo aksjomaty nieprecyzyjnie
sformufowane, ktore pozwalaja na udowodnienie zbyt mocnych twierdzen
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Algorytmy pomocnicze: relacja rownosci

Jedng ze szczegolnych relacji wystepujacych w formutach logicznych jest relacja
réwnosci (identycznosci) terméw.

Przyktad:

A = {=(zona(Zdzich), Gabrysia), Posiada(zona(Zdzich), alfa-8c) }.
Czy to znaczy, ze Gabrysia posiada Alfe 8c Competizione?

Czy mozemy to udowodni¢ metoda rezolucji?

Posiada(Gabrysia, alfa-8c)?

Niestety, nie. Procedura dowodowa rezolucji nie traktuje predykatu rownosci w zaden
szczegdlny sposob i nie wykorzysta posiadanej informacji o identycznosci terméw. Aby
dowdd w powyzszym przyktadzie byt mozliwy musielibysmy sformutowaé dodatkowy
aksjomat réwnosci:

Vx,y, z |Posiada(z, y) A =(x, z) = Posiada(z, y)]
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Za pomoca sformufowanego powyzej aksjomatu rownosci mozna udowodnic, ze
Gabrysia posiada Alfe, jak rowniez podobne fakty o posiadaniu dla innych posiadaczy
okreslanych jawnie lub niejawnie. Jednak aby moc podobne wnioskowanie rozciggnac
na rownowazno$¢ przedmiotu posiadania, niezbedny jest jeszcze inny aksjomat:

Vx,y, z |Posiada(z, y) A =(y, z) = Posiada(z, z)]

Co gorsza, aby system mogt sprawnie postugiwac sie znanymi faktami tozsamosci
termdéw w odniesieniu do wszystkich relacji, analogiczne aksjomaty réwnosci nalezatoby
napisa¢ dla wszystkich symboli predykatow. Niestety, w jezyku logiki pierwszego rzedu
nie mozna tego wyrazi¢ jedng wspdlng formuta typu:

VP y,z[P(y) N=(y,z) = P(z)]

Alternatywnym rozwigzaniem jest wbudowanie obstugi rownosci terméw w procedure
dowodzenia. Istnieje kilka rozwigzan tego problemu: reguta redukcji formut ze wzgledu
na relacje rownosci zwana demodulacjg, uogdlniona regufa rezolucji uwzgledniajaca
relacje rownosci zwana paramodulacjg, oraz wbudowanie relacji rownosci

w procedure unifikacji.
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Algorytmy pomocnicze: odzyskiwanie odpowiedzi z drzewa
rezolucji

Rozwazmy nastepujacy przyktad, wiemy ze:
Gdzie jest Ja$, tam jest Rafik. (V)| JestW(Jas, x) = JestW(Rafik, x)]
Jas jest w szkole. JestW(Jas, Szkota)

Chcemy znalez¢ odpowiedz na pytanie:
Gdzie jest Rafik? (Jx)[JestW(Rafik, x)]

Formuta logiczna odpowiadajaca oryginalnemu pytaniu rozni sie nieco od niego, ale
dowod znajduje sie fatwo:

—JestW(Jas,x)V JestW(Rafik,x) —JestW(Rafik,y)
JestW(Jas,Szkota) —JestW(Jas x)
NIL

Niestety, nie daje on odpowiedzi na pierwotnie postawione pytanie.
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Odzyskiwanie odpowiedzi z drzewa rezolucji (c.d.)

—JestW(Jas x)VJestW(Rafik,x) | | 7JestW(Rafik,y) —JestW(Jas x)VJestW(Rafik,x) | | ~JestW(Rafik,y)VJestW(Rafik,y)
JestW(Ja$,Szkota) —JestW(Ja$ x) JestW(Ja$,Szkota) —JestW(Jas$,x)VJestW(Rafik,x)
NIL JestW(Rafik,Szkota
N ( )

e Podstawowa procedura zamienia dowdd nie wprost na kompletny dowod tezy
wprost.

e Jesli twierdzenie zawiera alternatywy (po zaprzeczeniu staja sie koniunkcjami) to
w wyniku tej procedury otrzymujemy ztozong formute, ktéra moze by¢ trudna do
Interpretacji.

e Jesli twierdzenie zawiera kwantyfikator ogdlny to po zaprzeczeniu pojawiaja sie
w niej state lub funkcje Skolema, ktoére ladujg w odpowiedzi, ale moga by¢
zamienione na zmienne kwantyfikowane uniwersalnie.

Metody oparte na logice — algorytmy pomocnicze



Algorytmy pomocnicze: strategie przyspieszajjce rezolucje

W dowodzeniu twierdzen z wykorzystaniem rezolucji w procedurze dowodowej nie
wprost, dazymy do wygenerowania klauzuli pustej, wskazujacej na sprzecznosé¢. Aby
mie¢ pewnosc, ze taka klauzule wygenerujemy, zaktadajac, ze jest to w ogdle mozliwe,
musimy generowac rezolwenty w jakis$ systematyczny sposéb, na przyktad realizujac
przeszukiwanie wszerz. Jednak przy wiekszych bazach danych, ten sposob moze
prowadzi¢ do generowania bardzo wielu wnioskow, z ktorych wiekszoSC moze nie miec
nic wspolnego z dowodzonym twierdzeniem.

Poszukuje sie zatem strategii przyspieszajacych, ktére pozwolityby odcigc i nie
generowac niektorych rezolwent. Strategie takie moga by¢ petne, tzn. dajace
gwarancje znalezienia rozwigzania (fatszu) jesli to tylko mozliwe, albo niepetne, czyli
nie dajace takiej gwarancji (ale typowo znacznie skuteczniejsze).
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Strategie przyspieszajace:

e preferencja pojedynczych literatéw (normalnie niepetna, ale petna jesli jest
traktowana tylko jako preferencja)

e strategia zbioru podtrzymania (set of support): tylko rezolucje z klauzulami
z pewnego zbioru, poczatkowo uzyskanego z zaprzeczonej tezy (petna)

e rezolucja wejéciowa (input resolution) zezwala tylko na rezolucje z uzyciem klauzuli
wejsciowej (petna tylko w niektérych przypadkach, np. dla hornowskich baz danych)

e rezolucja liniowa (niepetna)

e climinacja powtorzen i specjalizacji (petna)
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Nierozstrzygalnos¢ rachunku predykatow

Rachunek predykatéw wydaje sie jezykiem reprezentacji dobrze nadajacym sie do
wyrazania faktoéw i wnioskowania w systemach sztucznej inteligencji. Nalezy jednak
zdawac sobie sprawe z pewnych jego ograniczen, ktére zawezajg jego uzytecznosc
praktyczna.

Twierdzenie Churcha (1936, o nierozstrzygalnosci rachunku predykatéw): nie istnieje
procedura pozwalajagca w ogolnym przypadku sprawdzac prawdziwosci formut rachunku
predykatéw. Moéwimy, ze rachunek predykatéw jest nierozstrzygalny (undecidable).

Ta wtasnos¢ w istotny sposdb ogranicza mozliwosci wnioskowania o faktach
wyrazanych w jezyku predykatow. Co prawda istnieje szereg klas formut, dla ktorych
procedura decyzyjna istnieje. Poza tym rachunek predykatéw ma wifasnosc
poftrozstrzygalnosci (semidecidability), co oznacza, ze istnieje procedura
pozwalajaca stwierdzi¢ niespetnialnos¢ dowolnej formuty niespetnialnej w skonczone;j
liczbie krokow. Niestety, dla formut, ktore nie s3 niespetnialne, ta procedura moze
nigdy sie nie zatrzymac.
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Niezupetnos¢ w rachunku predykatow

Ktos mogtby myslec, ze nierozstrzygalnos¢ rachunku predykatéow mozna pokonac,
korzystajac z pdtrozstrzygalnosci. Chcac udowodni¢ formute ¢ ze zbioru aksjomatéw
A, uruchamiamy réwnolegle dwa dowody: A - ¢ i A - —p. Na mocy
potrozstrzygalnosci, przynajmniej jeden z tych dowodow powinien zakonczyc sie
powodzeniem. Niestety, to rowniez moze sie nie udac.

Twierdzenie Godla (1931, o niezupetnosci): w rachunku predykatéw mozna
sformufowac teorie niezupetne, czyli takie, w ktérych istniejg formuty zamkniete,
ktorych nie mozna wywiesc, ani nie mozna wywiesc ich zaprzeczenia. Co wiecej, takie
teorie sg dosc proste, na przyktad taka teorig jest teoria liczb naturalnych, generowana
opisujgcym je zbiorem aksjomatow.

Teorie T nazywamy rozstrzygalna jesli istnieje algorytm pozwalajacy dla dowolne;j
formuty zamknietej o stwierdzi¢, czy o € T, czy @ & T. Teorie niezupetne s3 wiec
W oczywisty sposob nierozstrzygalne.

Twierdzenie Godla ma taki skutek, ze jesli po pewnej liczbie krokéw dowodu A = ¢
(i, by¢ moze, réwnolegtego dowodu A =), nadal nie ma rozwigzania, to nie
mozemy mie¢ pewnosci, czy dowdd jednak sie zakonczy (przynajmniej jeden z nich),
czy mamy do czynienia z teorig niezupetna.
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Zmiany zachodzgce w czasie

Rachunek predykatéw dobrze spisuje sie jako jezyk reprezentacji dla dziedzin
statycznych, gdzie nic sie nie dzieje, i wszystko co jest prawdziwe, pozostaje takie na
zawsze. Swiat realny niestety taki nie jest.

Na przyktad, jesli formuta: JestW(Ja$, Szkota) poprawnie opisuje stan biezacy jakiegos
powszedniego dnia przed pofudniem, to niestety, musimy sie liczy¢ z tym, ze Jas
pojdzie w pewnym momencie do domu. Jesli aksjomatyka dobrze opisuje skutki dziatan
agentdw, to system mogtby nawet wywnioskowaé nowy fakt: JestW(Jas, Dom).
Niestety, wtedy w bazie danych powstanie sprzecznosc, ktéra dla systemu logicznego
jest katastrofg. System dowodzenia zawierajacy fatsz w swoich aksjomatach moze
udowodni¢ dowolne twierdzenie!

Cwiczenie: zatézmy, ze w zbiorze aksjomatéw A istnieja, miedzy innymi, dwie klauzule:
P i = P. Przedstaw dowod dowolnej formuty (). Wskazéwka: najpierw udowodnij, ze
PV =PV (@ jest tautologia (zdaniem zawsze prawdziwym) dla dowolnych P i Q).
Mozna to sprawdzi¢ wykonujac dowdd = (P V =PV @), czyli dowodzac tezy

z pustym zbiorem aksjomatéw. Nastepnie dodaj tak udowodniong tautologie do bazy
A i przeprowadz dowdd ().
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Logiki czasowe

Dla rozwigzania problemu reprezentacji zmian stworzono wiele specjalistycznych teorii
logicznych, zwanych logikami czasowymi (temporal logics). Zwykte fakty wyrazane
w tych logikach zachodza w okreslonych momentach czasowych. Natomiast czas, jego
wtasnosci, i specjalne reguty wnioskowania dotyczace jego uptywu, s3 w logikach
czasowych wbudowane w teorie (zamiast by¢ reprezentowane jawnie, na réwni z innymi
wtasno$ciami $wiata).

Jedna z gtownych kwestii, roznigcych te teorie, jest sama reprezentacja czasu. Moze on
by¢ dyskretny lub ciaggty, moze by¢ okreslany w postaci punktéw lub przedziatéw, moze
by¢ ograniczony lub nieograniczony, itp. Co wiecej, czas moze byc pojeciem liniowym,
lub rozgatezionym. Zwykle powinien jednak by¢ uporzadkowany, choc istniejg kotowe
reprezentacje czasu.

Dla kazdej z takich logik czasowych, aby dato sie efektywnie wnioskowac o tworzonych
formutach, reprezentujacych zjawiska, z ktérymi ma do czynienia inteligentny agent,
musi istnieC procedura dowodowa. Konstrukcja takiej procedury moze opierac sie na
rzutowaniu danej teorii do logiki predykatéw pierwszego rzedu.
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Rachunek sytuacji

Alternatywa do logik czasowych jest bezposredni zapis momentéw czasowych w jezyku
reprezentacji. Przyktadem takiego podejscia jest rachunek sytuacji:
At(Agent, |1,1],Sy) N At(Agent, [1,2],51) A S1 = Result(Forward, Sy)
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Metody oparte na logice — rachunek sytuacji 77



Q
]
[
l""“'--.
Forvward

5}

i

RN
Q-
"“--...__‘__l_“--‘--“‘--‘1
Q-

¥,
Turn (Rivht}

Forvrd

78

rachunek sytuacji

Metody oparte na logice



Rachunek sytuacji (cd.)

Rachunek sytuacji wykorzystuje pojecia: sytuacji, akcji, i fluentéw:

sytuacje: sytuacjg jest stan poczatkowy s, i dla kazdej sytuacji s i akcji a sytuacja
jest réwniez Result(a, s); sytuacje odpowiadajg sekwencjom akcji i w ten sposéb sa
rozne od standw, tzn. agent moze znalez¢ sie w danym stanie poprzez rézne
sytuacje,

fluenty: funkcje i relacje, ktére podlegaja zmianom w czasie nazywane s3 fluentami
| posiadajg argument sytuacji, typowo jest to ostatni argument,

aksjomaty dopuszczalnosci akcji: opisuja warunki stosowalnosci akcji, np. dla
akcji Shoot: Have(Agent, Arrow, s) = Poss(Shoot, s)
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aksjomaty nastepstwa akcji: opisuja nastepstwa akcji dla wszystkich fluentow, np.
dla akcji Grab aksjomat powinien stwierdzaé, ze po prawidtowym wykonaniu te;]
akcji agent bedzie trzymat to co podnidst; nalezy jednak pamietaé rowniez
o sytuacjach, kiedy fluent nie ulegt zmianie w wyniku wykonania jakiejs akgji:

Poss(a, s) =
(Holding(Agent, g, Result(a, s)) <
a = Grab(g) V (Holding(Agent, g,s) A a # Release(g))).

aksjomaty unikalnosci akcji: ze wzgledu na obecnos¢ klauzul réznosci akgji
w aksjomatach nastepstwa, musimy zapewni¢ mechanizm pozwalajacy agentowi
stwierdzac takie fakty, na przyktad przez aksjomaty unikalnosci akcji; dla kazde;
pary symboli akcji A; i A; musimy zapisa aksjomat (na pozdr oczywisty) A; # A;;
ponadto dla akcji z parametrami musimy zapisac tez:

Ai(zr, ) = Aj(y1, e Yn) S 1= A ATy =Yy
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Przyktad z matpa i bananami — aksjomatyzacja

e wiedza ogdlna o Swiecie i operatorach (czesciowa i uproszczona):

Al: VpVp Vs [At(BOX, p, s) = At(BOX, p, goto(p1, S))]
A2: VpV¥p Vs [At(BANANAS, p, s) = At(BANANAS, p, goto(p1, 5))]
A3: VpVs [At(MONKEY, p, goto(p, s))]

A4: YpVp Vs [At(BOX, p, s) A At(MONKEY, p, s) = At(BOX, p1, move(BOX, p, p1, S))]
Ab: VpVp1VpoVs [At(BANANAS, p, s) = At(BANANAS, p, move(BOX, p1, P2, S))]
A6: VpVp Vs [At(MONKEY, p, s) = At(MONKEY, p1, move(BOX, p, p1, 5))]
A7: Vs [Under(BOX, BANANAS, s) = Under(BOX, BANANAS, climb(BOX, s))]
A8: VpVs [At(BOX, p, s) A At(MONKEY, p, s) = On(MONKEY, BOX, climb(BOX, s))]
A9: Vs [Under(BOX, BANANAS, s) A On(MONKEY, BOX, §) = Havebananas(grab(BANANAS, s))]
A10: VpVs [At(BOX, p, s) A At(BANANAS, p, s) = Under(BOX, BANANAS, 5]

e dane zadania:

Al1l: [At(MONKEY, Py, Sy) A At(BOX, P, Sp) A At(BANANAS, P35, Sp)]

e teza do udowodnienia:

Js(Havebananas(s))

2Przedstawione tutaj rozwigzanie problemu matpy i bananéw wzorowane jest na przyktadzie z ksigzki Philipa C.
Jacksona Jr!a: , Artificial Intelligence”.
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Przyktad z matpa i bananami — zbiér klauzul

Al: {-At(BOX, p, s1), At(BOX, p, goto(p1, s1)) }

A2: {—At(BANANAS, ¢, 52), At(BANANAS, ¢, goto(q1, 52))}

A3: {At(MONKEY, ", goto(r, s3)) }

A4: {-At(BOX, u, s4), "At(MONKEY, u, S4), At(BOX, 11, move(BOX, u, U1, S4)) }
A5: {—At(BANANAS, , S5), At(BANANAS, ¢, move(BOX, to, t3, 55)) }

A6: {—At(MONKEY, v1, S¢), At(MONKEY, v, move(BOX, v1, U2, Sg)) }

A7: {=Under(BOX, BANANAS, s7), Under(BOX, BANANAS, climb(BOX, s7))}

A8: {-At(MONKEY, w, sg), 7At(BOX, w, Ss), On(MONKEY, BOX, climb(BOX, s3)) }
A9: {—=Under(BOX, BANANAS, s9), "On(MONKEY, BANANAS, Sg),

Havebananas(grab(BANANAS, s9))}

A10: {—At(BOX, p, $19), "At(BANANAS, p, s10), Under(BOX, BANANAS, s10) }
Alla: {At(MONKEY, Py, Sy)}

Allb: {At(BOX, P, Sp)}

Allc: {At(BANANAS, P;, Sp)}

NT: {—Havebananas(z)}
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C1(A1,Allb)
C2(C1,A4)

C3(C2,A3)
C4(C3,A10)

C11(C10,C3)
C12(C8,A9)

C13(C11,C12)

C14(C13,NT)

Przyktad z matpg i bananami — dowadd

{At(BOX, P,, goto(p1, Sp))}
{—At(BANANAS, P,, goto(p1, Sp)),

At(BOX, u1, move(BOX, Ps, u1, goto(p1, So)))}
{At(BOX, u1, move(BOX, P», uy, goto( P, Sp)))}
{—At(BANANAS, 11, move(BOX, P, uy, goto( P, Sy))),

Under(BOX, BANANAS, move(BOX, P, uy, goto(Ps, Sp)))}
{At(BANANAS, P, goto(qy, Sp))}

{At(BANANAS, P3, move(BOX, t, t3, goto(q1, Sp)))}

{Under(BOX, BANANAS, move(BOX, P, P3, goto( P, Sy)))}
{Under(BOX, BANANAS, climb(BOX, move(BOX, P, P3, goto( P, Sy))))}
{At(MONKEY, v3, move(BOX, 1, U, goto(r, r1))) }

{At(BOX, vy, move(BOX, 1, v9, goto(r, 71))),

On(MONKEY, BOX, climb(BOX, move(BOX, r, 1y, goto(r, r1)))) }
{On(MONKEY, BOX, climb(BOX, move(BOX, P», u1, goto( P, Sy)))) }
{=On(MONKEY, BOX, climb(BOX, move(BOX, P», Ps, goto( P, Sp)))),

Havebananas(grab(BANANAS,

climb(BOX, move(BOX, P», P3, goto( P, Sy)))))}
{Havebananas(grab(BANANAS,
climb(BOX, move(BOX, P», P3, goto(P», Sy)))))}

4
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Przyktad z matpg i bananami — drzewo dowodu

Allb Al

N/ i
Allc “ At g \ /
\ / \cz/ A3 \ / i
\ / \ / C10

A10 c3
ANPZAN
C4 C11
/
A7 C7
N/
A9 C8
N/
C12
N\
C13 NT
C14=[]
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Frame problem

Poprawna reprezentacja zagadnienia wymaga jawnego zapisania efektéw dziatan
agenta w $rodowisku, jak réwniez zmian wywotanych przez inne czynniki (np. deszcz).
Jednak, jak widzielismy w przyktadach z wumpusem oraz matpa i bananami, konieczne
jest réwniez sformutowanie aksjomatéw niezmienniczosci, pozwalajace na wnioskowanie
o braku zmiany:

Va,z,s Holding(x,s) A (a # Release) = Holding(x, Result(a, s))
Va,z,s mHolding(x,s) A (a # Grab) = —Holding(x, Result(a, s))

Niestety, w Swiecie bardziej ztozonym niz Swiat wumpusa, fluentéw bedzie bardzo
wiele, i aksjomatyka musi opisywac ich zmiany oraz niezmiennos¢, zaréwno jako
bezposrednie, jak i uboczne, efekty wykonywanych akgji.

Te aksjomaty, zwane aksjomatami tfa (frame axioms) trudno jest wyrazi¢ w sposob
ogolny, i w znacznym stopniu komplikujg pierwotny opis Swiata.

Poniewaz w czasie pracy agent musi odpowiadac sobie na wiele pytan, prowadzac
dowody logiczne, mnogosc aksjomatow powoduje gwattowne powiekszanie sie jego
bazy danych, i w efekcie moze doprowadzi¢ do kompletnego paralizu.
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Krotkie podsumowanie — pytania sprawdzajace

1. Opracuj oparta na rachunku sytuacji reprezentacje dla Swiata wumpusa,
przedstawionego na poczatku tego wyktadu.
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Problemy z brakiem informacji

Przedstawione dotychczas metody oparte na logice zaktadaty, ze wszystkie informacje
niezbedne do przeprowadzenia wywoddw logicznych s3 agentowi dostepne, i s3 pewne.
Niestety, nie jest to realistyczne zatozenie.

Jednym z probleméw jest problem niepetnej informacji. Agent moze miec

czeSciowy, ale nie petnag informacje o problemie, co czesto uniemozliwia wycigganie
potrzebnych wnioskéw logicznych. Innym problemem jest niepewnos¢ informaciji.
Agent moze mie¢ dane pochodzace z réznych nie w petni wiarygodnych zrédet, np.:

o fakty ,typowe”,

o fakty ,mozliwe”,

e fakty ,prawdopodobne”,

e wyjatki od faktéw ogdlnie stusznych.

Posiadanie takich informacji czesto jest kluczowe dla podejmowania wtasciwych decyz;ji.
Ludzie tak postepuja, czynig zatozenia, domniemania, i czesto potrafig skutecznie je
wykorzystywaé. Chcielibysmy, by agent sztucznej inteligencji podobnie potrafit dziatac
w braku pewnej informacji, wykorzystac¢ informacje niepetne i niepewne, prowadzic¢
wywody opierajace sie na mozliwie najlepszych zrédtach danych, a takze oszacowujac
wiarygodno$¢ otrzymanych wnioskow. Niestety, klasyczna logika predykatow nie
dostarcza takich narzedzi, i nie potrafi robi¢ zadnego uzytku z tego rodzaju wiedzy.
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Logika zdrowego rozsadku

Zastandéwmy sie, jakie informacje cztowiek wie na pewno, podejmujac decyzje

w codziennym zyciu. Wstajac rano, ma zamiar pojechaé do pracy. Ale jesli jest jakas
awaria komunikacji miejskiej, to powinien wsta¢ duzo wczesniej, i najpierw sprawdzic,
czy kursuja autobusy. Dzien wczesniej, zakupit produkty, aby przyrzadzi¢ z nich
sniadanie. Ale czy wie na pewno, ze jego satatka Sniadaniowa jest nadal w lodéwce, czy
nie zepsufa sie, czy ktos jej nie wykradt, itp.

Whiosek: logicznie funkcjonujacy agent potrzebuje pewnych informacji do swego
dziatania, i predzej lub pdzniej zostanie sparalizowany stuprocentowa poprawnoscia
swego mechanizmu wnioskowania. W Swiecie rzeczywistym nigdy nie bedzie w stanie
odwazyc sie na jakiekolwiek dziatanie, dopdki nie bedzie miat petnej informacji

o otaczajacym go Swiecie.

Jednak ludzie potrafig sprawnie poruszac sie w Swiecie petnym informacji niepewne;

i niepetnej, faktow domysinych i wyjatkow. Jak to robig? Musimy uznaéd, ze w swoim
wnioskowaniu ludzie posfuguja sie nieco inng logika, niz rygorystyczna logika
matematyczna. Moznaby ogodlnie nazwac ten hipotetyczny mechanizm wnioskowania
logika zdrowego rozsadku (common sense reasoning).
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Logiki niemonotoniczne

Cze$¢ winy za problemy z wnioskowaniem przy uzyciu logiki klasycznej ponosi jej
wtasnosc okreslana jako monotonicznosc. W logice klasycznej, im wiecej wiemy, tym
wiecej mozemy wywieSC stosujgc wnioskowanie.

Cztowiek stosuje inny model wnioskowania, o wiele bardziej elastyczny, wykorzystujacy
informacje typowa, domyslng, mozliwg, a nawet brak informacji. Ten rodzaj
wnioskowania wydaje sie nie mie¢ wfasnosci monotonicznosci.

Na przyktad, o ile w braku dobrej informacji o sytuacji cztowiek bytby gotow wyciggnac
pewne wnioski i podejmowac decyzje (pochopne), to po zdobyciu petniejszej informac;i
moze juz nie by¢é w stanie wymyéli¢ dobrego rozwiazania problemu.’

Stad rézne modele wnioskowania, zmierzajagce do pokonania tych probleméw, i bardzie]
zblizone do elastycznego modelu wnioskowania cztowieka, okresla sie wspolnym
mianem logik niemonotonicznych.

3Rozwiagzanie, ktére wypracowat wczesniej, w braku informacji, byto btedne, ale moze byto lepsze niz brak jakiegokolwiek
dziatania. Chociaz niekoniecznie.
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Logiki niemonotoniczne — przyktad

Wyzwanie Minsky-ego: opracowanie systemu, ktory pozwolitby prawidtowo opisaé
ogolnie znany fakt, ze ptaki potrafig fruwac.

Vx[BIRD(z) — CANFLY(z)]

Aby uwzgledni¢ wyjatki, np. strusie, trzeba kazdorazowo modyfikowaé poprzednia
formute.

Vx[BIRD(x) A mOSTRICH(x) — CANFLY(x)]

Wyjatkéw jest wiecej: ptaki skapane w rozlanej ropie naftowej, ptaki bez skrzydet,
chore ptaki, martwe ptaki, namalowane ptaki, abstrakcyjne ptaki, ...

Pomyst: wprowadzamy operator modalny M:
Vx[BIRD(z) A M CANFLY(z) — CANFLY(z)]

Teraz wyjatki mozemy wprowadzac modularnie:

Vx[OSTRICH(x) — —CANFLY(x)]
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Dla nastepujacego zbioru faktow:
A = {BIRD( Tweety), BIRD(Sam), OSTRICH(Sam)}
mozemy wywie$¢: “CANFLY(Sam)
zatem nie powinno nam sie uda¢ wyprowadzic:
M CANFLY(Sam)  ani  CANFLY(Sam)

Jednak przy uzyciu normalnych procedur nie mozemy udowodnic¢ zdolnosci do latania
Tweety:

M CANFLY( Tweety), CANFLY( Tweety)

W tym celu niezbedna jest procedura dowodowa zdolna do efektywnego
(i automatycznego) dowodzenia twierdzen w jezyku predykatéw rozszerzonym
o operator modalny M, zgodna z nastepujaca reguta wnioskowania:
Not(l— —lp)
Mp
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Logiki niemonotoniczne — jaka procedura dowodowa?

Pomijajac ograniczenia wynikajace z odwotania do procedury dowodowej w powyzsze;
definicji, taka procedura nie bedzie jednak ani efektywna obliczeniowo, ani
rozstrzygalna, ani nawet potrozstrzygalna, jak procedury dowodowe dla rachunku
predykatow.

W przestance powyzszej reguty wnioskowania mamy bowiem stwierdzenie, ze pewnej
formuty nie da sie udowodni¢. To po pierwsze moze by¢ w ogdle niemozliwe do
stwierdzenia. Zas aby znalez¢ pozytywne potwierdzenie tego faktu bedzie na pewno
konieczne przeprowadzenie globalnego wnioskowania na catej bazie danych, bo inaczej
trudno bytoby stwierdzi¢, ze czego$ nie da sie udowodnic.

Dla odrdznienia, dowody w rachunku predykatow pierwszego rzedu maja charakter
lokalny. Jesli np. szczesliwie wybierzemy od razu wtasciwe przestanki to mozemy
uzyska¢ dowod w kilku krokach, nawet jesli baza danych liczy tysigce faktéw.
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Systemy zachowania spéjnosci logicznej (TMS)

Co ma zrobi¢ system wnioskowania logicznego gdy chciatby wycofac¢ jakis fakt P
posiadany w swojej bazie danych? Na przyktad:

e system rejestruje biezacy stan rzeczy (nie uwzgledniajac uptywu czasu ani historii)
| ten stan ulegt zmianie

e fakt byt wynikiem zatozenia dokonanego ad hoc (by¢ moze w wyniku rozumowania
niemonotonicznego) i obecnie s3 powody przypuszczal, ze w istocie jest
nieprawdziwy

Usuniecie btednie dokonanego zatozenia lub nieaktualnego faktu nie moze polegaé na
dodaniu faktu — P, poniewaz to nie wycofatoby btednego faktu P, a tylko wprowadzito
niespojno$¢ bazy danych, zawierajacej obecnie zarowno P jak i =FP. Zamiast tego,
nalezy usunac z bazy danych fakt P, oraz wszystkie inne fakty by¢ moze z niego
wywiedzione.

Na przyktad, jesli istniata implikacja P — (), to system mogt, wierzac
w pewnym okresie w prawdziwos¢ P, poprawnie wywnioskowac ().

Jednak fakty takie jak () niekoniecznie musza by¢ nieprawdziwe tylko dlatego, ze
nieprawdziwe okazato sie . Po jego pierwotnym wywiedzeniu z P system médgt
znalez¢ inne, niezalezne, potwierdzenia ().
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Systemy zachowania spdjnosci logicznej (truth maintenance systems), wspomagaja
proces wnioskowania przez rejestracje takich zaleznosci logicznych.

aksjomaty
zatozenia
Agent whnioski System
rozwiazujacy zaleznosci
zapytania X T™S
problem
odpowiedzi

Funkcje systemu TMS:

przechowywanie faktéw i wnioskéw

usuwanie faktéw z obstugg konsekwencji
ponowne przywracanie faktow i konsekwencji
dostarczanie agentowi uzasadnien faktéw
wykrywanie niespojnosci w zatozeniach
prowadzenie wnioskowania niemonotonicznego

o0 E =
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W najprostszym przypadku system TMS moze realizowac swe funkcje przez usuwanie
z bazy danych — w momencie wycofywania dokonanego wczesniej zatozenia —
wszystkich wnioskdw otrzymanych przez system. Jest to metoda prosta i skuteczna,
wymaga jednak kazdorazowego powtdrzenia dowoddow wszystkich twierdzen.

Nieco lepsza metoda jest usuwanie tylko wnioskéw wywiedzionych po wprowadzeniu do
bazy danych wycofywanego aktualnie zatozenia. Wymaga to utrzymywania informacji
o chronologii wprowadzania i wyprowadzania faktow, i nadal powtérzenia wielu
dowoddw, z ktorych wiekszo$¢ mogta nie mie¢ nic wspdlnego z wycofywanym
zafozeniem.

Jeszcze lepszg metodg jest rejestrowanie, dla wszystkich wnioskow, zatozen, na ktorych
byty oparte ich wywody, a nastepnie, przy wycofywaniu jakiegos zatozenia, usuwanie
uzasadnien, ktérych niezbedna czescig byto wycofywane zatozenie, a takze eliminacja
faktow, ktére stracity wszystkie swoje uzasadnienia.
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Przyktad
Agent posiada nastepujace fakty pewne, oraz, uzyskane w wyniku swojej pracy,
zatozenia niemonotoniczne i wnioski na nich oparte:

P—R { fakt }

Q—S { fakt }

R—S { fakt }

P { zatozenie }

Q { zatozenie }

R { wniosek(P) }

S { wniosek(P), wniosek(Q) }

Gdyby nastepnie, w trakcie pracy, agent postanowit wycofac sie z zatozenia P,
i poinformowat o tym system TMS, to ten skreslitby fakt R z listy faktow uznawanych
za stuszne, oraz skreslitby jedno z uzasadnien faktu S.

Gdyby w dalszym ciggu agent wycofatby réwniez zatozenie Q, to system TMS
musiatby juz ostatecznie usunag¢ fakt S.

Zauwazmy, ze gdyby agent nastepnie postanowit jednak przywrécic zatozenie P, to
system TMS nie miatby sposobu odzyskania usunietych wnioskéow R i S.

Metody oparte na logice — systemy TMS 96



System JTMS

Historycznie najwczesniejszy system TMS Doyle'a jest wtasnie oparty na
uzasadnieniach (pierwotnie nazwany po prostu TMS, ale p6zniej dla odréznienia od
innych systeméw nazywany réwniez JTMS). System ten pamieta dla kazdego faktu
jego uzasadnienie, lub uzasadnienia.

System JMS nie usuwa raz utworzonych struktur danych, tylko okresla status faktu
jako ,in" (fakt, w ktéry wierzymy, bo ma uzasadnienia) albo ,,out” (fakt, w ktéry nie
wierzymy, bo nie ma uzasadnien).

Gdy status jakiego$ faktu zmienia sie na ,out”, wtedy uzasadnienia niektorych innych
faktow moga rowniez zmienié status, powodujac propagacje konsekwencji takiej
zmiany w strukturach systemu JTMS.

Podobnie, gdy pojawia sie jaki$ fakt, ktéry miat juz poprzednio status ,,in", i jest
czescig uzasadnien innych faktéw, wtedy wystarczy zmienié status wszystkich takich
uzasadnien i faktéw na ,,in”, i udowodnione wczesniej wnioski automatycznie pojawiaja
sie znowu (tzw. ,unouting").

Zatem system JTMS utrzymuje stan swojej bazy danych w postaci jednego spdjnego
zestawu ,wierzen', i o kazdym stwierdzeniu mozemy powiedziec, czy aktualnie w nie
wierzymy czy nie.

Metody oparte na logice — systemy TMS 97



System ATMS

Innego rodzaju system TMS, oparty na zatozeniach i nazwany ATMS, zaproponowat
Johan de Kleer. ATMS nie etykietuje zadnych faktéw jako ,in" albo ,out”, a tylko
rejestruje wszystkie fakty i zatozenia w postaci weztow na jednym grafie zaleznosci.
System zaznacza, na podstawie informacji od uzytkownika, ktoére fakty s3 prawdziwe
przy ktérych zatozeniach, i nie ma pojecia w co wierzy w danej chwili.

Uzytkownik zgtasza systemowi wszystkie zatozenia, ktore go interesuja, niezaleznie czy
sg one wzajemnie spojne. ATMS aktualizuje graf zaleznosci, gdzie etykiety weztow
zawierajg zatozenia je uzasadniajace, i w kazdej chwili jest w stanie odpowiedziec, przy
jakim zestawie zatozen dany fakt jest prawdziwy.

Metoda de Kleer'a pokonuje wiekszo$¢ probleméw zwiazanych z systemami TMS (np.
unouting), i nadaje sie szczegdlnie do implementacji systeméw rozwazajacych
alternatywne warianty, gdzie konieczne jest czeste przetaczanie sie miedzy wzajemnie
wykluczajacymi sie punktami widzenia.

Jest to jednak metoda typowo dyskretng, dziatajacg na niezbyt duzej liczbie zatozen,
poniewaz musi uwzgledniaé wszystkie mozliwe ich kombinacje.
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Generacja wyjasnien

Systemy TMS moga by¢ rowniez postrzegane jako generatory wyjasnien. Jesli dla
danego faktu, ktéry jest obserwowany, istnieje szereg mozliwych uzasadnien, z ktérych
zadne nie jest obserwowane ani znane, to agent moze analizowac te uzasadnienia,

| wybierac te, ktére np. s3 minimalne, a przez to najbardziej prawdopodobne,

| skoncentrowac sie na znalezieniu przyczyny obserwowanej sytuacji.

Na przykfad, jako uzasadnienie faktu, ze nie da sie uruchomic silnika samochodu,
mozemy mieC zapisang niesprawno$¢ akumulatora, oraz jeszcze szereg innych
mozliwych przyczyn. Gdyby agent miat problemy z samochodem, i chciat okreslic jego
przyczyny, mogtby zaczaé analizowaé zbiory uzasadnienien takiej awarii, i na te;
podstawie probowac wybrnac z sytuacji. Na przyktad, mégtby uporzadkowaé te zbiory
uzasadnien wedftug licznosci, i zacza¢ od najmniejszych, wychodzac z zatozenia, ze
najmniejszy zbidr uzasadnien zwigzany jest z najprostsza okolicznoscig i przyczyna
awarii. Zatem préby wybrniecia z opresji mégtby nasz agent zacza¢ od sprawdzenia
akumulatora, gdyby to on wfasnie stanowit najprostsze w tym sensie wyjasnienie awarii.
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Problemy z metodami opartymi na logice

Podejscie logiczne do reprezentacji wiedzy i rozwigzywania problemoéw budzito swojego
czasu wiele emocji i nadziei na budowe wszechstronnych systeméw sztucznej
inteligencji. Istniejg jednak powazne przeszkody ograniczajgce zastosowanie tej metody
do rozwigzywania problemow praktycznych:

e eksplozja kombinatoryczna procedury dowodowej — istniejg strategie
usprawniajace, jednak niewiele pomagaja; jednoczesnie trudno jest potaczyé metody
formalne z dostepna informacja heurystyczna

e nierozstrzygalnosc i godlowska niezupetnos¢ rachunku predykatow

e wnioskowanie z uwzglednieniem zmian — rachunek sytuacji, logiki czasowe

o pojawia sie tu problem tta (frame problem) — poza okreSleniem co sie
zmienito, konieczne jest Sledzenie tego co sie nie zmienito

e wnioskowanie z uzyciem informacji niepetnej i/lub niepewnej — inne wyzwanie
dla metod formalnych, jednak nieodzowne w dziataniu cztowieka

o uwzglednienie informacji niepetnej prowadzi do wnioskowania
niemonotonicznego, ktorym ludzie postuguja sie sprawnie, podczas gdy
tradycyjna logika matematyczna jest scisle monotoniczna
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Zastosowanie metod opartych na logice

Wymienione problemy z metodami opartymi na logice istotnie utrudniaja ich
wykorzystanie jako platformy budowy inteligentnych agentow. Powszechnie
wykorzystywany w sztucznej inteligencji jest jedynie sam jezyk logiki pierwszego rzedu
jako jezyk zapisu faktow.

Jednak w pewnych konkretnych zastosowaniach, w ograniczonych dziedzinach,
powyzsze problemy majg mniejsze znaczenie, i mozna skutecznie korzystac z tej
metodologii.

Do tych zastosowan naleza:
e synteza i weryfikacja programdw, inzynieria oprogramowania,

e projektowanie i weryfikacja cyfrowej elektroniki obliczeniowej, w tym projektowanie
uktadéw VLSI,

e dowodzenie twierdzen w matematyce; pozwala poszukiwa¢ dowoddéw postulowanych
twierdzen, dla ktérych nie udaje sie znalez¢ dowodu metoda tradycyjna.
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