
Reprezentacja wiedzy w języku logiki

Metody przeszukiwania w przestrzeni stanów sformułowane były w postaci dość
ogólnej, jednak wymagały reprezentacji zagadnienia we właściwej formie, tzn.
przestrzeni stanów, zbioru operatorów, a dodatkowo przydatna/potrzebna była
informacja heurystyczna w formie funkcji oceny stanów.

Ogólnie, format i sposób reprezentacji wiedzy o zagadnieniu są niezwykle istotne i mają
bezpośredni wpływ na efektywność — lub w ogóle zdolność — znalezienia rozwiązania.

Istnieje szereg opracowanych ogólnych podejść do problemu reprezentacji, i różne
reprezentacje mają zwykle związane z nimi techniki wnioskowania, czyli formowania
pewnych ustaleń pomocniczych (wniosków), mogących służyć do znalezienia
ostatecznego rozwiązania problemu.

Jednym z najpopularniejszych schematów reprezentacji wiedzy jest język logiki
matematycznej.
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Dlaczego logika matematyczna jest dobrym językiem reprezentacji wiedzy dla sztucznej
inteligencji?

Z jednej strony, język logiki jest zbliżony do sposobu w jaki ludzie myślą o świecie,
i myśli swe wyrażają w zdaniach języka naturalnego. Czasami mówi się kolokwialnie, że
człowiek myśli „logicznie”. Kategorie, którymi myśli i mówi człowiek obejmują takie
konstrukcje jak: obiekty, związki między obiektami (relacje), stwierdzenia faktów
prostych i złożonych, zdania, spójniki zdaniowe, wyrażenia faktów warunkowych,
a nawet kwantyfikatory.

Z drugiej strony, logika matematyczna dostarcza precyzyjnego aparatu wnioskowania
opartego na dowodzeniu twierdzeń. Ludzie, myśląc, również stosują podobne
wnioskowanie logiczne, zatem aparat logiki matematycznej wydaje się dobrą platformą
reprezentacji wiedzy agenta inteligentnego, którego sposób wyrażania faktów
i wnioskowania byłby zbliżony do ludzkiego.
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Przykład: świat wumpusa

Do sprawdzenia działania wielu metod przydatne jest środowisko testowe dostatecznie
proste, aby można było intuicyjnie określać właściwe reprezentacje i sprawdzać proste
koncepcje, ale jednocześnie dostatecznie bogate, aby pozwoliło konfrontować te
metody z coraz bardziej realnymi przeszkodami.

Jednym z takich testowych środowisk podręcznikowych jest świat wumpusa.1 W tym
środowisku porusza się agent dążący do znalezienia złota (i bezpiecznego wyniesienia
go z jaskini). Na przeszkodzie stoją zapadliny (pits), w które agent może wpaść,
i potwór (tytułowy wumpus), który może agenta zjeść.

Agent może jedynie obracać się w prawo lub w lewo, poruszać się po jednym kroku do
przodu, wystrzelić z łuku jedyną posiadaną strzałę (na wprost), podnieść złoto, gdy je
znajdzie, i wyjść z jaskini, jeśli znajduje się w punkcie startowym.

1Przedstawione tu przykłady i diagramy świata wumpusa zaczerpnięte zostały z podręcznika Russella i Norviga „Arti-
ficial Intelligence A Modern Approach” i materiałów udostępnionych na stronie internetowej Stuarta Russella.
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Agent otrzymuje pewne informacje o środowisku (dane otrzymywane z receptorów
agenta nazywa się perceptami): wyczuwa smród wumpusa (stench) i powiew
powietrza z zapadlin (breeze), jeśli znajduje się w polu sąsiadującym z nimi. Ponadto
zauważa złoto (gold), ale tylko jeśli jest w tym samym polu co ono. Nie może jednak
sprawdzić swojej bezwzględnej pozycji (à la GPS), może jedynie sam swoją pozycję
rejestrować. Ściany jaskini wyczuwa jedynie przez próby wejścia w nie, które powodują
odbicia.
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Przykład: poruszanie się w świecie wumpusa
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Przykład: poruszanie się w świecie wumpusa (cd.)
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Rachunek zdań: składnia i formuły poprawne formalnie (wff)

Logika zdań jest bardzo prostym językiem logicznym. Pozwala na pisanie formuł
atomowych w oparciu o symbole zdaniowe. Pisząc formułę logiczną, stwierdzamy
pewien fakt. Przykłady formuł atomowych: P,Q,R,WumpusAt 1 5, HaveGold.

Możemy również pisać formuły złożone, które są konstruowane z innych formuł przy
użyciu spójników logicznych: ¬ (negacja), ∧ (koniunkcja), ∨ (alternatywa),
⇒ (implikacja) i ⇔ (równoważność) (ang. biconditional).

Formuły złożone mogą składać się z innych formuł złożonych z użyciem nawiasów lub
bez nich, jeśli nie są niejednoznaczne. Te zasady tworzenia wyrażeń formalnie
poprawnych, zwanych well-formed formulas lub wffs, tworzą razem składnię języka.

Przykłady wyrażeń formalnie poprawnych
(wff):

(P ∧Q) ∨ (¬P ∧ ¬Q)
¬¬P
(AgentAt 1 1 ∧ PitAt 1 2) ⇒ Breeze

HaveGold ∨ ¬HaveGold
HaveGold ∧ ¬HaveGold

Przykłady wyrażeń niepoprawnych
formalnie (nie-wff):

P ∧ ∧Q
P¬Q
P (WumpusAt 1 5)

Spróbuj wyjaśnić, dlaczego te
wyrażenia nie są wff.
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Rachunek zdań: semantyka

Składnia definiuje język. W przypadku logiki zdań składa się ona z: zestawu symboli
zdaniowych (mogą one być dowolne), zestaw spójników logicznych (to w zasadzie tylko
te pięć, które wprowadziliśmy) oraz reguły ich użycia.

Składnia nie określa znaczenia formuł. To jest rola semantyki języka. Semantyka
nadaje znaczenie każdemu z symboli zdaniowych. Po zdefiniowaniu znaczenia formuły
możemy zacząć mówić o tym, czy jest ona prawdziwa czy fałszywa. I to jest właściwym
celem reprezentacji logicznej.

Zauważ, że zapisaliśmy niektóre symbole zdaniowe już w taki sposób, aby zasugerować,
co mają oznaczać: AgentAt 1 1, P itAt 1 2, HaveGold. Inne symbole są po prostu
ogólne; można im przypisać dowolne znaczenie, abstrakcyjne lub bardzo konkretne:
P,Q,R.

Jednak język logiki musi być elastyczny i bardzo ogólny — z samego zapisu symbolu
zdaniowego nigdy nie możemy wnosić co ona rzeczywiście znaczy.
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Rachunek zdań: semantyka — światy możliwe, interpretacje

Jeśli skojarzymy formułę (zapisaną pojedynczym symbolem zdaniowym) AgentAt 1 1
ze takim znaczeniem, że agent świata wumpusa jest aktualnie na pozycji (1,1), to
nadal nie daje nam to możliwości sprawdzenia, czy formuła stwierdza prawdę lub nie.
Jest całkiem możliwe, że w jednym konkretnym przypadku gry jest to prawdą, podczas
gdy w wielu innych przypadkach jest fałszem.

Semantyka rozwiązuje ten problem przez powiązanie każdej formuły atomowej ze
światem możliwym, który jest konkretną konfiguracją opisywanej dziedziny
problemowej, w której wszystkie opisywane obiekty znajdują się w ściśle określonych
stanach. Odbywa się to za pomocą funkcji interpretacji, która wiąże każdą formułę
atomową (lub symbol zdaniowy) z określonym znaczeniem w odniesieniu do takiego
świata możliwego, a tym samym definiuje wartość logiczną takiej formuły.

Ważne jest, aby funkcja interpretacji była całkowicie zdefiniowana, tj. każdy symbol
zdaniowy występujący w języku był powiązany z jakimś aspektem świata możliwego,
a odpowiadająca mu formuła atomowa mogła być jednoznacznie zinterpretowany jako
mająca wartość 1 lub 0.

Metody oparte na logice — rachunek zdań 9



Rachunek zdań: semantyka — interpretacje, modele

Interpretacja wykorzystująca świat możliwy po lewej stronie przypisuje formule
AgentAt 1 1 wartość prawdy 1 (czyli: Prawda), podczas gdy inna interpretacja
wykorzystująca świat możliwy po prawej przypisuje tej samej formule wartość prawdy 0
(czyli: Fałsz):
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Światy możliwe są bardziej precyzyjnie określane jako modele.

Zauważ, że lokalizacje wszystkich obiektów (agenta, wumpusa, dziur), jeśli są opisane
przez symbole zdaniowe języka, muszą być określone przez każdy model, niezależnie od
tego, czy agent świata wumpusa zna te lokalizacje, czy nie.

W tych modelach nie jest możliwe np. posiadanie innego obiektu F , którego położenie
mogłoby opisane formułami takimi jak FAt 2 2. Gdyby tak było, wtedy powyższe
konfiguracje nie byłyby modelami dla takiej dziedziny problemowej, ponieważ nie
odzwierciedlają położenia obiektu F .
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Rachunek zdań: semantyka — spełnianie formuł

Mając konkretną formułę zdaniową, atomową lub złożoną, niektóre modele przypisują
jej wartość logiczną 1, podczas gdy inne przypisują jej wartość logiczną 0. Zauważ, że
nie ma innej opcji. Wszystkie obiekty opisane przez symbole zdaniowe są obecne w
modelu, a wszystkie ich własności są tam odzwierciedlone.

Mówimy, że model m spełnia formułę f , jeśli przypisze jej wartość prawdy 1.
Powiemy również, że model m, który spełnia formułę f , jest modelem tej formuły.

Zwróć uwagę na inne znaczenie słowa: model. Dowolny model (dla określonej dziedziny
problemowej) może spełniać daną formułę lub ją sfalsyfikować. Ale jeśli ją spełnia, to
jest modelem tej formuły.

Z definicji, jeśli wzór spełnia wszystkie modele, to nazywamy ją tautologią.
Przykładem tautologii jest P ∨ ¬P . Jej wartość logiczna nie zależy od modelu — musi
mieć przypisaną wartość logiczną 1 przy dowolnym modelu.

I odwrotnie, jeśli formuła nie może być spełniony przez żaden model, to jest nazywana
niespełnialną. Przykładem formuły niespełnialnej może być P ∧ ¬P .
Jej wartość prawdy również nie zależy od modelu — jest to stała 0.
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Rachunek zdań: semantyka — spełnianie formuł złożonych

Zatrzymajmy się na chwilę, aby zwrócić uwagę na istotny szczegół. Przede wszystkim
model definiuje prawdziwe wartości wszystkich formuł atomowych (symboli
zdaniowych). Mając to, wszystkie inne formuły (złożone) mają swoje wartości prawdy
określone przez semantykę konkretnych spójników logicznych.

Na przykład załóżmy, że model m przypisuje symbolowi AtAgent 1 1 wartość 1.
Następnie rozważmy formułę ¬AtAgent 1 1. Nie możemy wybrać dla niej dowolnej
wartości prawdy; musimy przyjąć, że jego wartość to 0. To samo dotyczy wszelkich
formuł używających ∧,∨ itd. Wartości prawdy wszystkich formuł, które je zawierają,
są definiowane przez ich tabele prawdy.

Jednocześnie chcielibyśmy upewnić się, że model ten przypisuje 0 wszystkim formułom
(atomowym) typu: AtAgent 1 2, AtAgent 2 1, AtAgent 2 2, ... . Ale reguły logiki
zdań nie wymuszają tego. Powyższe formuły nie są w żaden sposób powiązane, więc
model może przypisać im dowolne wartości logiczne. Posiadanie którejkolwiek z nich
równej 1 złamałoby zasady świata wumpusa (ponieważ powinien być tylko jeden agent
i może być tylko w jednym miejscu na raz), ale z logicznego punktu widzenia nic złego
by się nie stało.
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Rachunek zdań: semantyka — funkcje interpretacji

W zasadzie funkcja interpretacji przypisuje formule atomowej jakiś model (który może
być modelem tej formuły lub nie). Istnieje wiele modeli (możliwych światów), które
można rozważać. Ale z punktu widzenia ustalania prawdziwości formuł ważne jest tylko
to, które symbole zdaniowe dane modele spełniają, a które nie.

Ponieważ w określonej dziedzinie problemowej może występować tylko pewna liczba
symboli zdaniowych (określona liczbą obiektów i ich reprezentowanych własności), to
są tylko 2N (N - liczba symboli zdaniowych) typów modeli które naprawdę się liczą: te,
które spełniają określony symbol, i te, które go falsyfikują.

Z tego powodu, dla logiki zdań, często odrzucamy wielką różnorodność światów
możliwych i redukujemy zbiór modeli do zbioru różnych zerojedynkowych N -krotek
kojarzących wartości prawdy ze wszystkimi symbolami zdań:

AgentAt 1 1 WumpusAt 1 5 ...
m1 0 0 ...
m2 0 1 ...
m3 1 0 ...
m4 1 1 ...
... ... ... ...
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Rachunek zdań: semantyka — zbiory modeli

Biorąc pod uwagę poprzednie uogólnienie, możemy alternatywnie zacząć patrzeć na
formuły logiczne jako na zwarty sposób przedstawiania zbiorów modeli, a mianowicie
tych, które są modelami określonej formuły.

Na przykład o formule AgentAt 1 1 można myśleć jako o reprezentacji wszystkich
modeli, w których agent znajduje się w pozycji (1,1).
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Rachunek zdań: kilka praw logicznych

Ponieważ dla danej (złożonej) formuły interesuje nas przede wszystkim wyznaczenie jej
wartości prawdy, może być korzystne korzystanie z pewnych przekształceń, które
można wykonać na formułach logicznych z zachowaniem ich wartości prawdy.
W poniższych wzorach używa się symbolu równoważności ≡, który oznacza, że
w procesie oceny prawdziwości formuły jedna strona może być zastąpiona przez drugą.

Łączność:

p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

Ze względu na łączność zarówno koniunkcji, jak i alternatywy, możemy zapisać wiele
kolejnych wystąpień każdego z tych spójników bez nawiasów. Dzieje się tak dlatego, że
wartość logiczna formuły z wielokrotnymi wystąpieniami któregoś z tych spójników nie
zależy od kolejności, w jakiej spójniki są interpretowane:

p1 ∧ (p2 ∧ (p3 ∧ (...))) ≡ p1 ∧ p2 ∧ p3 ∧ ...

p1 ∨ (p2 ∨ (p3 ∨ (...))) ≡ p1 ∨ p2 ∨ p3 ∨ ...
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Rozdzielczość:

p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r)

p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

Prawa de Morgana:

¬(p ∧ q) ≡ (¬p) ∨ (¬q)

¬(p ∨ q) ≡ (¬p) ∧ (¬q)

Inne przydatne tożsamości:

p ⇒ q ≡ ¬p ∨ q
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Wnioskowanie logiczne — wynikanie

Baza wiedzy (KB) jest zbiorem formuł reprezentujących koniunkcję wszystkich
formuł składowych. Zbiór modeli takiego zbioru jest przecięciem zbiorów modeli formuł
składowych.

W sztucznej inteligencji bazą wiedzy jest zwykle baza danych wszystkich faktów, które
posiada agent AI. Wiedza agenta AI jest w sposób naturalny koniunkcją wszystkich
faktów z tej bazy. Typowym działaniem agenta jest próba odpowiedzi na pytanie, czy
z taką bazą wiedzy obowiązuje jakiś inny fakt, reprezentowany np. przez formułę f .

Może się zdarzyć, że w przypadku gdy wszystkie formuły ze zbioru KB są prawdziwe,
inna formuła f będzie zawsze prawdziwa, przy wszystkich możliwych interpretacjach.

Mówimy wtedy, że f wynika logicznie z KB, co zapisujemy KB |= f .

Na przykład: {P,Q} |= P ∧Q {P ∧Q} |= P {P ∨Q,¬P} |= Q {P ⇒ Q,P} |= Q

W logice zdań jednym ze sposobów stwierdzania wynikania jest użycie tablic prawdy.
W takiej tablicy wypisujemy wszystkie modele (przypisania prawdy dla symboli
zdaniowych) i sprawdzamy, czy wszystkie te modele, które spełniają pełną bazę KB,
również spełniają f .
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Krótkie podsumowanie - pytania sprawdzające

Dla następujących przykładów odpowiedz czy zachodzi podane wynikanie logiczne.

1. {P ∨Q} |= P ∧Q

2. {P ∧Q} |= P ∨Q

3. {P,Q} |= P ⇒ Q

4. {P,Q} |= ¬P ∨Q

5. {P ⇒ Q,¬Q} |= ¬P

6. {P ⇒ Q,¬P} |= ¬Q

7. {P ⇒ Q,¬P} |= Q

8. {P ⇒ Q,Q} |= P

9. {P ⇒ Q,Q ⇒ R} |= R

Metody oparte na logice — rachunek zdań 18



Wnioskowanie logiczne — modus ponens

W niektórych przypadkach na formułach logicznych możemy zastosować proces zwany
wnioskowaniem. Przykład:

Pada deszcz. (PadaDeszcz)
Kiedy deszcz pana, szosa jest mokra. (PadaDeszcz⇒SzosaMokra)
Wniosek: szosa jest mokra. (SzosaMokra)

Jest to przykład reguły wnioskowania zwanej modus ponens:

Dla dowolnych symboli zdaniowych p i q:

p, p ⇒ q

q

albo, bardziej ogólnie:

Dla dowolnych p1, . . . , pk, q:

p1, . . . , pk, (p1 ∧ · · · ∧ pk) ⇒ q

q
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Wnioskowanie logiczne — reguły wnioskowania

Możliwe są inne reguły wnioskowania, ogólnie zapisane zgodnie ze schematem:

f1, ..., fk (przesłanki)
g (wnioski)

Reguły wnioskowania możemy wykorzystać w procesie wnioskowania, stosując je
sukcesywnie na formułach z bazy wiedzy, aż do uzyskania pożądanego wniosku. Jest to
proces wnioskowania (ang. inferencji), a o każdej formule f uzyskanej w tym
procesie mówi się, że jest wyprowadzona z KB, zapisywane KB ⊢ f .

Algorytm wnioskowania wprzód:

repeat until no change to KB:
foreach inference rule

f1,...,fk
g

if f1, ..., fk ∈ KB ∧ g 6∈ KB
add g to KB

Jeśli f zostanie ostatecznie dodana do KB, to KB ⊢ f .
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Wynikanie a wnioskowanie formuł

Zauważmy, że proces wnioskowania działa ściśle w domenie składni. Działa na
formułach tak, jak są napisane i nie odnosi się do modeli ani sprawdzania prawdziwości.

Pojawia się zatem pytanie:

Jak ma się: KB |= f do: KB ⊢ f ?

Czy są one równoważne?
Czy można wyprowadzić dowolną formułę, która wynika logicznie?
A także, czy dowolna wyprowadzalna formuła, wynika logicznie?
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Krótkie podsumowanie - pytania sprawdzające

Dla następujących przykładów odpowiedz czy zachodzi podane wyprowadzanie.
Na początek przyjmij, że jedyną regułą wnioskowanie jest modus ponens: φ, φ⇒ψ

ψ
W dodatku do kroków wyprowadzania możesz wykorzystać prawa równoważności
logicznej takie jak przedstawione na stronach 15 do 16 aby przekształcić formuły do
pożądanej postaci równoważnej, zarówno w zbiorze KB jak i po prawej stronie.

1. {P,Q} ⊢ P ∧Q

2. {P ∧Q} ⊢ P

3. {P ∧Q} ⊢ P ∨Q

4. {P ⇒ Q,¬Q} ⊢ ¬P

Z kolei przyjmij, że oprócz modus ponens możesz dodatkowo użyć następujących reguł
wnioskowania: φ∧ψ

φ
(eliminacja koniunkcji), φ, ψ

φ∧ψ (wprowadzenie koniunkcji), i φ
φ∨ψ

(wprowadzenie alternatywy).
Najpierw ponownie rozwiąż powyższe przykłady, a potem jeszcze następujące:

5. {P,Q} ⊢ P ⇒ Q

6. {¬P,Q} ⊢ P ⇒ Q

7. {P ⇒ Q,P ∨Q} ⊢ Q

8. {P ⇒ Q,P ∧R} ⊢ Q ∧R
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Reguły wnioskowania: poprawność i kompletność reguł

Reguła wnioskowania jest poprawna (ang. sound), jeśli pozwala na wyprowadzenie
z dowolnej KB tylko takich formuł, które wynikają logicznie z tej KB. (Ale może nie
wywodzić WSZYSTKICH takich formuł.)

Reguła wnioskowania jest kompletna, jeśli pozwala na wyprowadzenie z dowolnej KB
WSZYSTKICH formuł, które wynikają logicznie z tej KB. (Ale może również wywodzić
inne formuły, które być może nie wynikają logicznie z tej KB.)

Z powyższego wynika, że gdybyśmy mieli regułę wnioskowania, która byłaby zarówno
poprawna, jak i kompletna, moglibyśmy użyć procesu wnioskowania, zamiast
sprawdzania wszystkich modeli (tablic prawdy).

Ale nie jest łatwo znaleźć taką regułę wnioskowania. Na przykład, modus ponens jest
poprawna, ale nie jest kompletna. Aby to zobaczyć, zauważmy, że w poprzednim
przykładzie:

KB={PadaDeszcz, PadaDeszcz⇒SzosaMokra}

byliśmy w stanie wyprowadzić za pomocą modus ponens formułę SzosaMokra, ale z tej
bazy wiedzy wynika logicznie również (PadaDeszcz∧PadaDeszcz⇒SzosaMokra), której
nie można wyprowadzić za pomocą reguły modus ponens.
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Reguły wnioskowania: poprawność i kompletność zbiorów

reguł

Załóżmy, że mamy więcej niż jedną regułę wnioskowania. Jak w tym przypadku działa
poprawność/kompletność?

Powinno być jasne, że niezależnie od tego, jak wiele reguł wnioskowania rozważymy,
chcemy, aby każda z nich była (indywidualnie) poprawna. Pojedyncza niepoprawna
reguła pozwoliłaby algorytmowi wnioskowania na wprowadzenie do bazy wiedzy
sprzecznych wniosków, niezależnie od tego, co mogą zaoferować inne reguły.

Przykład: rozważ dwie hipotetyczne reguły wnioskowania: p, q
p∨q ,

p, q
¬(p∨q)

Pierwsza jest poprawna, ale druga nie.

Jeśli obie są obecne w systemie, algorytm wnioskowania będzie musiał
wyprowadzić zarówno (p ∨ q), jak i ¬(p ∨ q). Bez względu na to, ile istnieje
poprawnych reguł wnioskowania, jedna nieprawidłowa reguła może zepsuć cały
system, pozwalając na wywnioskowanie fałszywej formuły.
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Reguły wnioskowania: poprawność i kompletność zbiorów

reguł (cd.)

Kompletność to inna historia. Może się zdarzyć, że dla pewnego zbioru reguł
wnioskowania {IR1, IR2, ..., IRn} system wnioskowania będzie w stanie z dowolnej KB
wyprowadzić wszystkie formuły, które wynikają logicznie z tej KB. Wtedy taki zbiór
reguł wnioskowania byłby kompletny jako całość, nawet jeśli którakolwiek, lub nawet
wszystkie z tych reguł, mogą z osobna nie być kompletne.

Tak więc jednym ze sposobów stworzenia systemu wnioskowania, w którym
wyprowadzenie formuł było równoważne z wynikaniem logicznym, byłoby znalezienie
takiego zestawu poprawnych reguł wnioskowania, które razem tworzyłyby zbiór
kompletny.

Jest to możliwe, ale jest też inne rozwiązanie.
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Postać Koniunkcyjna Normalna

Trochę terminologii:
Literałem nazwiemy dowolną formułę atomową lub jej negacją.
Klauzulę nazwiemy formułę, która jest alternatywą literałów.
O formule, która jest koniunkcją klauzul będziemy mówić, że jest w postaci
koniunkcyjnej normalnej (ang. Conjunctive Normal Form CNF ).

Krótko możemy powiedzieć, że formuła CNF jest koniunkcją klauzul.

Przykłady: [(P ∨Q ∨ ¬R) ∧ (P ∨ ¬Q) ∧R], (P ∧Q), (P ∨Q),¬P, P
Przykłady formuł nie-CNF: (P ⇒ Q) ∧ (Q ⇒ P ),¬(P ∧Q)

Fakt: dowolną formułę rachunku zdań można przekonwertować na równoważną formułę
w postaci CNF.

Formuły CNF są przydatne, ponieważ pozwalają na wnioskowanie przy użyciu rezolucji.

I, co równie ważne, proces ten można całkowicie zautomatyzować.

Metody oparte na logice — rachunek zdań 27



Reguły wnioskowania: rezolucja

Korzystając ze znanej i użytecznej tożsamości:

(p ⇒ q) ≡ (¬p ∨ q)

możemy przepisać modus ponens do innej postaci:

p, ¬p ∨ q

q

Zauważ, że wyrażenia podświetlone na czerwono w pewnym sensie kasują się. Ma to
sens, ponieważ jeśli wiemy, że p jest prawdziwe, to ¬p jest z pewnością fałszywe
i można je usunąć z alternatywy, otrzymując q jako nowy wniosek.

Obserwację tę można uogólnić do następującej reguły wnioskowania zwanej rezolucją:

p1 ∨ · · · ∨ pn ∨ q , ¬q ∨ r1 ∨ · · · ∨ rm

p1 ∨ · · · ∨ pn ∨ r1 ∨ · · · ∨ rm

Rezolucja może być używana jako jedyna reguła wnioskowania w poprawnym
i kompletnym systemie dowodzenia twierdzeń.
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Wnioskowanie logiczne z wykorzystaniem rezolucji —

przykłady

Rozważmy kilka typowych schematów wnioskowania logicznego. Załóżmy, że ilekroć
wiemy, że P , to również Q jest prawdziwe, a jeśli Q to także R, jeśli R to S, oraz jeśli
S to także T . Załóżmy, że wiemy również, że prawdą jest P . Wtedy powinniśmy być
w stanie wywnioskować wszystkie te fakty w wyniku szeregu zastosowań reguły
wnioskowania modus ponens. Zobaczmy, jak to działa z postacią CNF i rezolucją.

Oryginalne fakty: P,P ⇒ Q,Q ⇒ R,R ⇒ S, S ⇒ T

Te same fakty w postaci CNF i graficzna reprezentacja
łańcucha kroków wnioskowania rezolucji:

(Zauważ, że w postaci graficznej łańcuch
kroków wnioskowania tworzy rodzaj drzewa.
Jest to typowe.)

❅
❅

❅
❅

❅
❅

❅
❅

P

Q

R

S

T

✡
✡

✡
✡

✡
✡
✡

✡
✡

✡
✡

✡
✡

✡✡

✡
✡

✡
✡

✡
✡

✡
✡

✡
✡✡

¬P ∨Q ¬Q ∨ R ¬R ∨ S ¬S ∨ T

W powyższym schemacie wnioskowania wszystkie kroki wykonywane na klauzulach
CNF mogą być równie dobrze wykonane z regułą modus ponens na oryginalnych
formułach implikacyjnych. Jednak nie zawsze działa to w taki sposób.
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Rozważmy inny schemat rozumowania. Załóżmy, że znanych jako prawdziwe jest kilka
faktów: P,Q,R, S. Załóżmy dalej, że wszystkie te fakty razem wzięte implikują T .

Originalne fakty: P,Q,R, S, (P ∧Q ∧R ∧ S) ⇒ T .
Fakty w postaci CNF: P,Q,R, S, (¬P ∨ ¬Q ∨ ¬R ∨ ¬S ∨ T ).

The resolution tree:

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆❆

❆
❆
❆
❆
❆
❆
❆❆

❆
❆
❆
❆❆

❆
❆

✪
✪

✪
✪

✪
✪

✪
✪

P Q R S ¬P ∨ ¬Q ∨ ¬R ∨ ¬S ∨ T

¬P ∨ ¬Q ∨ ¬R ∨ T

¬P ∨ ¬Q ∨ T

¬P ∨ T

T

Tym razem wnioskowanie końcowej formuły T nie mogło być uzyskane za pomocą
modus ponens. W tym celu musielibyśmy najpierw otrzymać formułę P ∧Q ∧R ∧ S,
która wynika ze zbioru pierwotnych faktów, ale za pomocą modus ponens wyprowadzić
jej się nie da. Tak samo zresztą nie można tego zrobić za pomocą rezolucji. Rezolucją
udało się wyprowadzić T z postaci CNF oryginalnych faktów, ale nie uda się
wyprowadzić prostej koniunkcji oryginalnych faktów, ponieważ rezolucja może tworzyć
wnioski tylko przez połączenie dwóch klauzul ze skasowanymi literałami konfliktowymi.

Aby móc wyprowadzić formuły takie jak powyższa koniunkcja, musimy użyć rezolucji
w specjalny sposób.
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Puste klauzule

O pojedynczym literale możemy mówić jak o klauzuli unarnej, czyli o alternatywie tylko
tego jednego literału. Ponadto dopuszczamy puste klauzule, które są traktowane jako
alternatywy zero literałów. Można to wyjaśnić za pomocą notacji funkcyjnej dla
alternatywy, dzięki asocjacyjności:

p1 ∨ p2 ∨ ... ∨ pn ≡ ∨(p1, p2, ..., pn)
p ∨ q ∨ r ≡ ∨(p, q, r)

p ∨ q ≡ ∨(p, q)
p ≡ ∨(p)
␣ ≡ ∨()

O ile prawdziwość dowolnej klauzuli niepustej zależy od prawdziwości jej składników, to
klauzula pusta musi mieć stałą interpretację logiczną. Przez proste uogólnienie definicji
wartości logicznych alternatywy możemy otrzymać, że klauzula pusta jest formułą
fałszywą (niespełnialną). Ponieważ będziemy musieli posługiwać się pustą klauzulą
w notacji logicznej, do jej oznaczenia używamy symbolu ✷.

Klauzula pusta może być traktowana jako element neutralny dla spójnika alternatywy:

✷ ∨ p ≡ p ≡ p ∨ ✷
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Wnioskowanie nie-wprost oparte na rezolucji

Poprawny i kompletny system dowodzenia twierdzeń może być stworzony przy użyciu
rezolucji w procesie wnioskowania nie wprost (refutation reasoning). Aby uzyskać:

KB ⊢ f

dodajemy negację formuły twierdzenia ¬f do zbioru KB i — mając nadzieję, że jest
to teraz niespójny zbiór formuł logicznych — spróbujmy wyprowadzić formułę
niespełnialną (fałszywą). Zakładając, że oryginalny KB jest spełnialny, jedynym
źródłem niespełnialności może być dodana formuła (¬f), a to dowodzi prawdziwości f .

Ponieważ system wnioskowania oparty na rezolucji działa z klauzulami, wynikiem tego
procesu nie wprost będzie pusta klauzula. Jeśli można ją uzyskać, dowód jest
kompletny. Jeśli nie da się uzyskać klauzuli pustej, wtedy twierdzenie, które
próbowaliśmy udowodnić, musi być fałszywe (w logice zdań).

Zauważmy jednak, że niepowodzenie wyprowadzenia klauzuli pustej samo w sobie nie
jest dowodem fałszywości twierdzenia, podobnie jak nieumiejętność znalezienia dowodu
nie oznacza, że takowy nie istnieje. Ale jeśli poszukiwanie pustej klauzuli jest
prowadzone w systematyczny sposób i jest zupełne, na przykład przez zapewnienie, że
wypróbowane zostały wszystkie możliwe kroki wnioskowania w rozwiązaniu, wtedy
wniosek, że twierdzenie jest fałszywe, może być poprawnie sformułowany.
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Wnioskowanie nie wprost z wykorzystaniem rezolucji —

przykład

Dla prostej ilustracji dowodu nie wprost z wykorzystaniem rezolucji rozważmy
poprzedni przypadek posiadania w bazie danych czterech faktów: P,Q,R, S i próby
wyprowadzenia ich koniunkcji: P ∧Q ∧R ∧ S. Wyprowadzenie:
{P,Q,R, S} ⊢ (P ∧Q ∧R ∧ S) nie jest możliwe ani przez modus ponens, ani przez
rezolucję używaną w sposób bezpośredni.

Próbując rezolucji nie wprost, negacja twierdzenia okazuje się być pojedynczą klauzulą:
¬P ∨ ¬Q∨ ¬R∨ ¬S. A kolejność kroków prowadzących do pustej klauzuli jest prosta:

❚
❚

❚
❚
❚
❚❚

❚
❚
❚
❚
❚
❚
❚❚

❚
❚
❚
❚
❚
❚
❚
❚
❚
❚ ✪✪

✪✪

✪✪

✪✪

P Q R S ¬P ∨ ¬Q ∨ ¬R ∨ ¬S

¬P ∨ ¬Q ∨ ¬R

¬P ∨ ¬Q

¬P

✷
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Krótkie podsumowanie — pytania sprawdzające

Dla poniższego zestawu formuł napisz wszystkie możliwe do uzyskania rezolwenty.
Jeśli nie można wykonać żadnego kroku rezolucji, podaj krótkie wyjaśnienie.
Porównaj obliczone rezolwenty z logicznymi konsekwencjami, które możesz
wyprowadzić intuicyjnie z podanych formuł.
Zwróć uwagę na przecinki, aby poprawnie zidentyfikować formuły w zbiorach.

1. { P ∨Q , ¬P ∨ ¬Q }

2. { P ⇒ Q , Q ⇒ R }

3. { ¬P ⇒ Q , Q ⇒ R }

4. { P ∨Q ∨R , ¬P ∨Q ∨R }

5. { P ∨Q ∨R , ¬P ∨ ¬Q ∨ ¬R }

6. { P ∨Q , P ∨ ¬Q , ¬P ∨Q }

7. { P ⇒ (Q ∨R) , ¬Q ∧ ¬R }

8. { P ⇒ Q , R ⇒ Q , P ∨R }
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Rachunek predykatów pierwszego rzędu — termy

Termy reprezentują w języku logiki obiekty, i mogą być: stałymi (oznaczają konkretny
obiekt), zmiennymi (mogą przybierać wartości różnych obiektów), lub funkcjami
(wyznaczają jakiś obiekt na podstawie wartości swoich argumentów, inaczej, przypisują
jednym obiektom inne).

Przykłady termów: A, 123, x, f(A), f(g(x)), +(x, 1)

Umownie zapisujemy termy stałe wielkimi literami, a zmienne małymi.

Zauważmy, że w powyższych przykładach ostatni term jest niejawnym zapisem
następnika x, a nie operacją odejmowania. W czystej logice nie ma odejmowania.
Będziemy mieli do czynienia z tym problemem w wielu sytuacjach.
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Rachunek predykatów pierwszego rzędu — predykaty

Predykaty reprezentują relacje na zbiorze termów. Możemy je traktować jako funkcje
mające wartość prawdy lub fałszu (1 lub 0), które przypisują prawdę każdej n-ce
termów spełniających relację, a fałsz każdej n-ce niespełniającej.

Zapis predykatu z zestawem termów nazywamy formułą atomową.

Przykłady formuł atomowych: P , Q(A), R(x, f(A)), > (x, 10)

Zapis funkcyjny: > (x, 10) jest odpowiednikiem relacji: x > 10. W arytmetyce
potraktowalibyśmy taki zapis jako nierówność i moglibyśmy ją rozwiązywać. Natomiast
formuły logiczne możemy jedynie wartościować, to znaczy wyznaczać ich wartość
logiczną prawdy lub fałszu. Gdy formuła zawiera zmienną to często nie da się
wyznaczyć jej wartości logicznej.
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Reprezentacja faktów za pomocą formuł

Jaki sens ma język logiki predykatów?

Możemy przy jego użyciu opisać fakty, które chcemy wyrazić, np.:

At(Wumpus, 2, 2)
At(Agent, 1, 1)
At(Gold, 3, 2)

Wybór zestawu symboli, którymi zamierzamy opisać obiekty i relacje pewnego świata,
nazywamy konceptualizacją. Na przykład, alternatywna do powyższej
konceptualizacja świata wumpusa mogłaby zawierać formuły:

AtWumpus(loc(2, 2))
AtAgent(loc(1, 1))
AtGold(loc(3, 2))

Powyższe konceptualizacje są podobne, aczkolwiek mają nieco odmienne właściwości,
np. w drugiej wumpus, agent, ani złoto nie wystąpią w jawnej postaci. Ogólnie od
przyjętej konceptualizacji może zależeć łatwość, a nawet możliwość wyrażania różnych
faktów o dziedzinie problemowej.
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Reprezentacja faktów za pomocą formuł (cd.)

Przykładem problemu konceptualizacyjnego świata wumpusa jest opis istnienia
i położenia dziur. Możemy nadać dziurom prawa obywatelskie i tożsamość:

At(Pit4, 3, 3)

W ten sposób możemy łatwo opisać cały świat widziany z lotu ptaka, nadając
poszczególnym dziurom dowolnie wybrane nazwy (termy stałe). Z punktu widzenia
agenta poruszającego się w świecie wumpusa ta konceptualizacja jest jednak bardzo
niewygodna. Trudno byłoby w ten sposób opisać świat stopniowo poznawany, gdy na
początku agent nie zna nawet liczby dziur. Istnienie dziury trzeba wtedy opisać
zmienną:

At(x, 3, 3)

Jednak z tego zapisu nie wynika, że x jest dziurą i wymaga to uzupełniających opisów.
Wygodną alternatywą jest postrzeganie dziur jako anonimowych, i tylko zapisywanie
faktów istnienia lub nieistnienia dziur w konkretnych miejscach:

PitAt(3, 3)
NoPitAt(1, 1)
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Spójniki logiczne i formuły złożone

Formuły złożone języka predykatów pierwszego rzędu można konstruować za
pomocą spójników logicznych takich jak: ¬,∧,∨,⇒,⇔. Jako szczególny
przypadek, formułę która jest formułą atomową lub negacją formuły atomowej
nazywamy literałem.
Przykłady formuł złożonych (pierwsza jest pojedynczym literałem):

¬At(Wumpus, 1, 1)
PitAt(2, 1) ∨ PitAt(1, 2)
[At(Agent, 1, 1) ∧ PitAt(2, 1)] ⇒ Percept(Breeze)

Zauważmy, że ostatnia formuła jest zupełnie innej natury, niż dwie pierwsze. Dwie
pierwsze formuły mogą stanowić fragment opisu świata otrzymanego i/lub
budowanego przez agenta inteligentnego w trakcie jego pracy w świecie wumpusa.
Natomiast ostatnia formuła wyraża jedno z praw świata wumpusa. Agent zna to
prawo, i może posiadać taką formułę w swojej bazie wiedzy.

Fakty ogólnie słuszne w danej dziedzinie problemowej nazywamy aksjomatami
świata. Natomiast fakty opisujące stan konkretnej instancji problemu, nazywamy
incydentalnymi.
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Kwantyfikatory

Formuły złożone można również budować za pomocą kwantyfikatorów: ∀,∃, które
wiążą zmienne w formułach. Ogólny schemat formuły z kwantyfikatorem:

∀xP (x)

Zmienną niezwiązaną kwantyfikatorem w formule nazywamy wolną. Formuła:

∃yQ(x, y)

zawiera dwie zmienne, jedną wolną, a drugą związaną kwantyfikatorem.

Zdaniem nazywamy formułę bez wolnych zmiennych.

Przykłady:

∃x, y At(Gold, x, y)
∀x, y [At(Wumpus, x, y) ∧ At(Agent, x, y)] ⇒ AgentDead

∀x, y [At(Wumpus, x, y) ∧ At(Agent,−(x, 1), y)] ⇒ Percept(Stench)

Zwróćmy uwagę, że w ostatnim przykładzie −(x, 1) jest niejawnym zapisem
współrzędnej na lewo od x, a nie odejmowaniem. W logice nie ma odejmowania.
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Krótkie podsumowanie — pytania sprawdzające

1. Opracuj kompletną konceptualizację świata wumpusa w rachunku predykatów
pierwszego rzędu. To znaczy: wprowadź symbole termów (stałych i funkcji
termowych), oraz symbole predykatów niezbędne do opisywania instancji problemów
w tej dziedzinie.

Uwaga: nie rozważamy procesu poszukiwania rozwiązania, analizy alternatywnych
ruchów i ich skutków, opisywania sekwencji kroków, itp. Poszukujemy jedynie
formatu pozwalającego na statyczny opis stanu zagadnienia, tzw. snapshot.

2. Wykorzystując reprezentację opracowaną w poprzednim punkcie, opisz instancję
problemu przedstawioną na stronie 4.

3. Spróbuj zapisać aksjomatykę świata wumpusa, to znaczy: ogólne reguły rządzące
tym światem.
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Przekształcanie formuł logicznych do postaci klauzulowej

Formułę bez zmiennych wolnych możemy przekształcić do postaci klauzulowej
(inaczej: prenex) gdzie wszystkie kwantyfikatory zapisane są przed formułą:

(i) przemianuj zmienne związane kwantyfikatorami na unikalne,
(ii) zastąp koniunkcjami i alternatywami pozostałe spójniki logiczne,
(iii) przesuń negacje do wewnątrz formuł (do symboli predykatów),
(iv) wyodrębnij kwantyfikatory poza formułę,
(v) przekształć formułę do postaci koniunkcyjnej (CNF),
(vi) zastąp wszystkie kwantyfikatory egzystencjalne funkcjami Skolema.

Pierwsze pięć kroków są równoważnościowymi przekształceniami logicznymi (przy
zachowaniu właściwej kolejności wyodrębnianych kwantyfikatorów w kroku (iv)). Krok
(vi), tzw. skolemizacja, polega na zastąpieniu formuł postaci:

∀x1∀x2...∀xn∃y Φ(x1, x2, ..., xn, y)

formułą
∀x1∀x2...∀xn Φ(x1, x2, ..., xn, fy(x1, x2, ..., xn))

gdzie fy jest nowo wprowadzonym symbolem funkcyjnym zwanym funkcją Skolema.
(W przypadku braku kwantyfikatorów ∀ będzie to stała Skolema.)
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Twierdzenie Skolema

Ostatni krok w algorytmie przekształcenia formuły do postaci klauzulowej nie jest
równoważnościowym przekształceniem logicznym. To znaczy, dla oryginalnej formuły
logicznej Φ, i otrzymanej w wyniku przekształcenia jej postaci klauzulowej Φ′,
w ogólności Φ 6≡ Φ′.

Zachodzi jednak następująca własność, zwana twierdzeniem Skolema: dla
zamkniętej formuły Φ, jeśli Φ′ jest jej postacią klauzulową, to Φ jest spełnialna wtedy
i tylko wtedy gdy Φ′ jest spełnialna.

Zatem, o ile nie możemy w ogólności posługiwać się postacią klauzulową Φ′ zamiast
oryginalnej formuły Φ, to jednak możemy posługiwać się tą postacią
dla celów dowodzenia spełnialności (lub niespełnialności).

Istnieje niezwykle przydatny schemat wnioskowania, wykorzystujący formuły w postaci
klauzulowej, zapisywane często w postaci zbioru (lub listy) klauzul, gdzie poszczególne
klauzule są zapisane w postaci zbiorów (lub list) literałów.
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Krótkie podsumowanie — pytania sprawdzające

Przekształć do postaci prenex następujące formuły rachunku predykatów:

1. ∀x [(P (x) ⇒ Q(x)) ∧ (P (x) ⇒ R(x))]

2. ∀x [(P (x) ∧Q(x)) ∨ (R(x) ∧ S(x))]

3. ∀x∃y [P (x) ⇒ Q(x, y)]

4. ∃x∀y [P (x, y) ⇒ Q(A, x)]

5. ∀x∃y [P (x, y) ⇒ Q(y, f(y))]
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Podstawienia zmiennych w formułach

Będziemy rozważali przekształcenia formuł polegające na zastępowaniu zmiennych
w formułach innymi wyrażeniami (termami). Ponieważ zmienne w formułach w postaci
prenex domyślnie związane są kwantyfikatorami uniwersalnymi, zastępowanie
zmiennych innymi termami oznacza branie szczególnych przypadków formuły.

Podstawieniem (substitution) nazwiemy zbiór odwzorowań określających termy
podstawiane pod poszczególne zmienne. Podstawiane termy nie mogą zawierać
zastępowanej zmiennej. Przykład podstawienia: s = {x 7→ A, y 7→ f(z)}.

Wykonanie podstawienia polega na syntaktycznym zastąpieniu wszystkich
wystąpień danej zmiennej w formule związanym z nią termem. Wszystkie zastąpienia
wykonywane są jednocześnie, czyli wynikiem wykonania podstawienia
s = {x 7→ y, y 7→ A} na termie f(x, y) będzie term f(y, A).

Zauważ, że w ten sposób nie ma znaczenia w jakiej kolejności zmienne są zastępowane,
pomimo iż podstawienie jest zbiorem (nieuporządkowanym).
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Złożeniem podstawień s1 i s2 (zapisywanym: s1s2) nazwiemy podstawienie uzyskane
przez zastosowanie podstawienia s2 do termów z s1, oraz dopisanie do otrzymanego
zbioru wszystkich par z s2 ze zmiennymi nie występującymi w s1.

Φs1s2 = (Φs1)s2

s1(s2s3) = (s1s2)s3
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Unifikacja

Unifikacją nazywamy takie podstawienie termów pod zmienne w zbiorze formuł, aby
sprowadzić wszystkie formuły w zbiorze do identycznych (lub równoważnych logicznie,
patrz wyjaśnienie niżej) formuł, czyli zbioru singletonowego.

Unifikator zbioru formuł to jest podstawienie redukujące zbiór do
jednoelementowego. Zbiór jest unifikowalny jeśli istnieje jego unifikator.

Na przykład: zbiór {P (x), P (A)} jest unifikowalny, i jego unifikatorem jest
s = {x 7→ A}.

Podobnie, zbiór {P (x), P (y), P (A)} jest unifikowalny, a jego unifikatorem jest
s = {x 7→ A, y 7→ A}.

Zbiór {P (A), P (B)} nie jest unifikowalny, podobnie jak zbiór {P (A), Q(x)}.
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Unifikacja (cd.)

Unifikacja jest ogólną procedurą, ale tutaj będziemy wykonywać unifikacje wyłącznie
na zbiorach klauzul. Rozważmy poniższe, przykładowe zbiory klauzul:

Φ = {P ∨Q(x), P ∨Q(A), P ∨Q(y)}

Ψ = {P ∨Q(x), P ∨Q(A), P ∨Q(f(y))}

Ω = {P ∨Q(x), P ∨Q(A) ∨Q(y)}

Zbiór Φ jest unifikowalny, jego unifikatorem jest s = {x 7→ A, y 7→ A},
a zunifikowanym zbiorem jest singletonowy zbiór Φs = {P ∨Q(A)}.

Zbiór Ψ nie jest unifikowalny.

Zbiór Ω jest bardziej skomplikowanym przypadkiem. Stosując czysto syntaktyczną
unifikację, nie jest on unifikowalny, bo po wykonaniu samego podstawienia formuły
nie są identyczne. Jednak stosując semantyczną unifikację, jest on unifikowalny,
ponieważ po wykonaniu podstawienia formuły są logicznie równoważne. Będziemy
dopuszczali unifikację semantyczną z zastosowaniem łączności i przemienności
alternatywy.
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Najogólniejszy unifikator (mgu)

Najogólniejszym unifikatorem unifikowalnego zbioru formuł, albo mgu (most

general unifier), nazywamy najprostszy (minimalny) unifikator dla tego zbioru.

Dla unifikowalnego zbioru formuł zawsze istnieje jego mgu, a dowolny unifikator dla
tego zbioru można otrzymać przez złożenie mgu z jakimś innym podstawieniem.
Algorytm unifikacji pozwala wyznaczyć mgu zbioru formuł.
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Krótkie podsumowanie — pytania sprawdzające

Dla poniższych zbiorów klauzul odpowiedz, czy dany zbiór jest unifikowalny. Jeśli tak,
to podaj jego unifikator. Spróbuj podać zarówno mgu, jak i inny unifikator, który nie
jest mgu. Jeśli zbiór nie jest unifikowalny, to krótko uzasadnij dlaczego.
Zwróć uwagę na przecinki, aby prawidłowo odczytać formuły w zbiorach.

1. {P (x) , P (f(x))}

2. {P (x, y) , P (y, x)}

3. {P (x, y) , P (y, f(x))}

4. {P (x, y) , P (y, f(y))}

5. {P (x, y) , P (y, z) , P (z, A)}
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Rezolucja — przypadek ogólny

Rezolucja w ogólnym przypadku: gdy dla dwóch klauzul (zbiorów literałów) {Li}
i {Mi} istnieją ich podzbiory {li} i {mi}, zwane literałami kolidującymi, takie, że
zbiór {li} ∪ {¬mi} daje się zunifikować i s jest jego mgu, wtedy ich rezolwentą jest
zbiór [{Li} − {li}]s ∪ [{Mi} − {mi}]s.

Mogą istnieć różne rezolwenty danych klauzul dla różnych wyborów podzbiorów ich
literałów. Na przykład, rozważmy następujące klauzule:

P [x, f(A)] ∨ P [x, f(y)] ∨Q(y) oraz ¬P [z, f(A)] ∨ ¬Q(z)

Wybierając {li} = {P [x, f(A)]} oraz {mi} = {¬P [z, f(A)]} otrzymujemy
rezolwentę:

P [z, f(y)] ∨ ¬Q(z) ∨Q(y)

Natomiast wybierając {li} = {P [x, f(A)], P [x, f(y)]} oraz {mi} = {¬P [z, f(A)]}
otrzymujemy:

Q(A) ∨ ¬Q(z)

Metody oparte na logice — rezolucja 53



Krótkie podsumowanie — pytania sprawdzające

Dla poniższych zbiorów klauzul, zapisz wszystkie możliwe do otrzymania rezolwenty.
Dla każdej rezolwenty zanotuj, z których klauzul została otrzymana, i jakie było
zastosowane podstawienie. Jeśli nie jest możliwe wykonanie rezolucji, to wyjaśnij
dlaczego nie.
Zwróć uwagę na przecinki, aby prawidłowo odczytać formuły w zbiorach.

1. {¬P (x) ∨Q(x) , P (A)}

2. {¬P (x) ∨Q(x) , ¬Q(x)}

3. {¬P (x) ∨Q(x) , P (f(x)) , ¬Q(x)}
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Rezolucja jako reguła wnioskowania

Rezolucja jest poprawną regułą wnioskowania ponieważ klauzula otrzymana z pary
klauzul w wyniku zastosowania rezolucji, wynika z nich logicznie. Jednak nie jest
kompletna, to znaczy nie możemy z jej pomocą wygenerować z danej formuły ∆
każdego wniosku ϕ, takiego że ∆ ⊢ ϕ.

Na przykład, dla ∆ = {P,Q} nie możemy rezolucją wywieść formuł P ∨Q ani P ∧Q,
a dla ∆ = {∀xR(x)} nie możemy wywieść formuły ∃xR(x).

Jednak jeśli zastosujemy rezolucję w procedurze dowodzenia nie wprost, czyli przez
zaprzeczenie tezy i wyprowadzenie sprzeczności, reprezentowanej przez klauzulę pustą
(oznaczaną ✷), to możemy udowodnić nią każde twierdzenie. Zatem w tym sensie
rezolucja jest kompletna (refutation complete).

Rozważmy powyższe przykłady. Dla ∆ = {P,Q} zaprzeczeniem formuły P ∨Q są
klauzule ¬P i ¬Q i każda z nich pozwala natychmiast wygenerować klauzulę pustą
z odpowiednią klauzulą z ∆. Zaprzeczeniem formuły P ∧Q jest klauzula ¬P ∨ ¬Q
i możemy uzyskać klauzulę pustą w dwóch krokach rezolucji. Dla ∆ = {∀xR(x)}
zaprzeczeniem formuły ∃xR(x) jest ¬R(y), która unifikuje się z klauzulą R(x)
otrzymaną z ∆ i daje klauzulę pustą w jednym kroku rezolucji.
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Dowodzenie twierdzeń oparte na rezolucji

Podstawowy schemat wnioskowania opartego na rezolucji, gdy posiadamy zbiór
aksjomatów ∆ i chcemy z niego wywieść formułę ϕ, jest następujący. Łączymy zbiory
klauzul otrzymanych z ∆ i ¬ϕ, i próbujemy wywieść sprzeczność (klauzulę pustą)
z otrzymanego łącznego zbioru klauzul, przez zastosowanie rezolucji na kolejnych
parach wybranych klauzul. W tym procesie uzyskana w bieżącym kroku rezolucji nowa
klauzula zostaje każdorazowo dołączona do głównego zbioru klauzul, i procedura jest
powtarzana.

Podstawowy wynik logiki matematycznej tu wykorzystywany jest następujący. Jeśli
uruchomimy rezolucję na zbiorze klauzul otrzymanym z niespełnialnej formuły,
z jakimś systematycznym algorytmem generowania rezolwent, to w pewnym momencie
otrzymamy klauzulę pustą. I na odwrót, jeśli ze zbioru klauzul otrzymanego z jakiejś
formuły można procedurą rezolucji wygenerować klauzulę pustą, to ten zbiór klauzul,
ale także oryginalna formuła, są niespełnialne. Obejmuje to również klauzule otrzymane
w wyniku skolemizacji, a więc jest zarazem potwierdzeniem poprawności tej procedury.
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Dowodzenie twierdzeń: przykład

Wiadomo, że:
1. Kto potrafi czytać ten jest oświecony. (∀x)[R(x) ⇒ L(x)]
2. Delfiny nie są oświecone. (∀x)[D(x) ⇒ ¬L(x)]
3. Niektóre delfiny są inteligentne. (∃x)[D(x) ∧ I(x)]

Należy udowodnić twierdzenie:
4. Są tacy inteligentni co nie potrafią czytać. (∃x)[I(x) ∧ ¬R(x)]

Po konwersji do postaci prenex CNF otrzymujemy klauzule:
C1: ¬R(u) ∨ L(u) z pierwszego aksjomatu
C2: ¬D(v) ∨ ¬L(v) z drugiego aksjomatu
C3a: D(A) z trzeciego aksjomatu, cz.1
C3b: I(A) z trzeciego aksjomatu, cz.2
NT: ¬I(w) ∨R(w) z negacji twierdzenia

Z kolejnych kroków rezolucji otrzymujemy:
C5: R(A) rezolwenta klauzul C3b i NT
C6: L(A) rezolwenta klauzul C5 i C1
C7: ¬D(A) rezolwenta klauzul C6 i C2
C8: ✷ rezolwenta klauzul C7 i C3a

C3a C2 C1 C3b NT
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊
❊❊

w=A

❊
❊
❊
❊
❊
❊
❊
❊
❊
❊

u=A

❉
❉
❉
❉❉

v=A

✂
✂
✂
✂✂

C5
✂
✂
✂
✂✂

C6
✂
✂
✂
✂✂

C7
✂
✂
✂
✂✂

C8=✷
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Dowodzenie twierdzeń: poważniejszy przykład

Rozważmy przykład z matematyki.2 Chcemy udowodnić, że przekrój dwóch zbiorów
zawiera się w dowolnym z nich. Zaczynamy od wypisania aksjomatów, z których
rozumowanie będzie musiało korzystać. W tym przypadku są to definicje pojęć
przekroju i zawierania się zbiorów.

∀x∀s∀t (x ∈ s ∧ x ∈ t) ⇔ x ∈ s ∩ t

∀s∀t (∀x x ∈ s ⇒ x ∈ t) ⇔ s ⊆ t

Formuła do udowodnienia:
∀s∀t s ∩ t ⊆ s

2Przykład zapożyczony z książki Geneseretha i Nilssona „Logical Foundations of Artificial Intelligence”.
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Po przetworzeniu do postaci klauzul otrzymujemy:

1. {x 6∈ s, x 6∈ t, x ∈ s ∩ t} z definicji przekroju
2. {x 6∈ s ∩ t, x ∈ s} z definicji przekroju
3. {x 6∈ s ∩ t, x ∈ t} z definicji przekroju
4. {F (s, t) ∈ s, s ⊆ t} z definicji zawierania się
5. {F (s, t) 6∈ t, s ⊆ t} z definicji zawierania się
6. {A ∩B 6⊆ A} z zaprzeczenia tezy

Zauważmy funkcje Skolema w klauzulach 4 i 5, oraz stałe Skolema w klauzuli 6. Dalej
następuje wywód prowadzący dosyć prosto do klauzuli pustej.

7. {F (A ∩B,A) ∈ A ∩B} z klauzul 4. i 6.
8. {F (A ∩B,A) 6∈ A} z klauzul 5. i 6.
9. {F (A ∩B,A) ∈ A} z klauzul 2. i 7.

10. {} z klauzul 8. i 9.

To koniec dowodu. Cel osiągnięty. Trochę trudno poczuć satysfakcję jaka zwykle
towarzyszy osiągnięciu tradycyjnego dowodu matematycznego. Również aby prześledzić
rozumowanie i np. je sprawdzić, trzeba się trochę napracować, aczkolwiek w przypadku
tego dowodu jest to jeszcze względnie proste.
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Krótkie podsumowanie — pytania sprawdzające

Dla podanych poniżej zbiorów aksjomatów ∆ i formuły ϕ, spróbuj udowodnić ∆ ⊢ ϕ

metodą rezolucji nie wprost. Zacznij od zaprzeczenia formuły celowej, następnie
z otrzymanego zaprzeczenia i zbioru aksjomatów utwórz podstawowy zbiór klauzul.

1. ∆ = {∀x(Lubi(x,Wino) ⇒ Lubi(Rychu, x)), Lubi(Zdzich,Wino)}
ϕ = Lubi(Rychu,Zdzich)

2. ∆ = {∀x(Lubi(x,Rychu) ⇒ Lubi(Rychu, x)),¬Lubi(zona(Zdzich),Rychu)}
ϕ = Lubi(Rychu, zona(Zdzich))

3. ∆ = {∀x(Lubi(x,Wino) ⇒ Lubi(Rychu, x)), Lubi(Zdzich,Wino)}
ϕ = (Lubi(Rychu,Zdzich) ∨ Lubi(Rychu, zona(Zdzich))

4. ∆ = {∀x(Lubi(x,Wino) ⇒ Lubi(Rychu, x)), Lubi(Zdzich,Wino)}
ϕ = (Lubi(Rychu,Zdzich) ∧ Lubi(Rychu, zona(Zdzich))
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Inżynieria wiedzy

Przedstawiony formalizm logiki predykatów pierwszego rzędu, wraz z rezolucją jako
metodą dowodzenia twierdzeń nie wprost, pozwala na budowę inteligentnych agentów
efektywnie rozwiązujących stawiane im problemy. Budowa takiego agenta wymaga
konstrukcji reprezentacji, którą można sformułować w postaci następującego procesu,
zwanego inżynierią wiedzy:

identyfikacja problemu
określenie zakresu pytań, na które agent będzie musiał znajdować odpowiedzi,
rodzaju faktów, którymi będzie mógł się posługiwać, itp.; na przykład,
w odniesieniu do świata wumpusa, musimy określić, czy agent ma umieć planować
działania, czy np. tylko tworzyć reprezentację stanu świata rozpoznanego
w dotychczasowych działaniach?

pozyskanie wiedzy
twórca oprogramowania agenta (inżynier wiedzy) może nie rozumieć wszystkich
niuansów opisywanego świata, i musi współpracować z ekspertami aby pozyskać
całą niezbędną wiedzę
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definicja słownika reprezentacji
pojęcia i obiekty z dziedziny problemowej muszą zostać opisane formułami
logicznymi; konieczne jest zdefiniowanie słownika predykatów i termów, tzn. funkcji
termowych oraz stałych; ten etap może się okazać kluczowy dla zdolności do
efektywnego rozwiązywania problemów, np. w świecie wumpusa, czy zapadliny lepiej
przedstawić jako obiekty, czy własności miejsc

kodowanie wiedzy ogólnej
kodowanie aksjomatów zawierających ogólną wiedzę o dziedzinie problemowej,
regułach rządzących światem, istniejących heurystykach, itp.

kodowanie wiedzy szczególnej
zapis konkretnego problemu do rozwiązania przez agenta, w tym zadanych mu
faktów o konkretnych obiektach, oraz postawionego zadania jako pytania do
odpowiedzenia lub, ogólniej, twierdzenia do udowodnienia

przedstawienie zapytań do urządzenia wnioskującego
uruchomienie procedury dowodzenia na skonstruowanej bazie wiedzy + faktach
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debugowanie bazy wiedzy
niestety, podobnie jak w przypadku zwykłych programów, rzadko kiedy
skonstruowany system będzie od razu poprawnie działał; mogą zdarzyć się takie
problemy, jak brak kluczowych aksjomatów, albo aksjomaty nieprecyzyjnie
sformułowane, które pozwalają na udowodnienie zbyt mocnych twierdzeń
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Algorytmy pomocnicze: relacja równości

Jedną ze szczególnych relacji występujących w formułach logicznych jest relacja
równości (identyczności) termów.

Przykład:
∆ = {=(żona(Zdzich),Gabrysia),Posiada(żona(Zdzich), alfa-8c)}.
Czy to znaczy, że Gabrysia posiada Alfę 8c Competizione?
Czy możemy to udowodnić metodą rezolucji?
Posiada(Gabrysia, alfa-8c)?

Niestety, nie. Procedura dowodowa rezolucji nie traktuje predykatu równości w żaden
szczególny sposób i nie wykorzysta posiadanej informacji o identyczności termów. Aby
dowód w powyższym przykładzie był możliwy musielibyśmy sformułować dodatkowy
aksjomat równości:

∀x, y, z [Posiada(x, y) ∧ =(x, z) ⇒ Posiada(z, y)]
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Za pomocą sformułowanego powyżej aksjomatu równości można udowodnić, że
Gabrysia posiada Alfę, jak również podobne fakty o posiadaniu dla innych posiadaczy
określanych jawnie lub niejawnie. Jednak aby móc podobne wnioskowanie rozciągnąć
na równoważność przedmiotu posiadania, niezbędny jest jeszcze inny aksjomat:

∀x, y, z [Posiada(x, y) ∧ =(y, z) ⇒ Posiada(x, z)]

Co gorsza, aby system mógł sprawnie posługiwać się znanymi faktami tożsamości
termów w odniesieniu do wszystkich relacji, analogiczne aksjomaty równości należałoby
napisać dla wszystkich symboli predykatów. Niestety, w języku logiki pierwszego rzędu
nie można tego wyrazić jedną wspólną formułą typu:

∀P, y, z[P (y) ∧ =(y, z) ⇒ P (z)]

Alternatywnym rozwiązaniem jest wbudowanie obsługi równości termów w procedurę
dowodzenia. Istnieje kilka rozwiązań tego problemu: reguła redukcji formuł ze względu
na relację równości zwana demodulacją, uogólniona reguła rezolucji uwzględniająca
relację równości zwana paramodulacją, oraz wbudowanie relacji równości
w procedurę unifikacji.
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Algorytmy pomocnicze: odzyskiwanie odpowiedzi z drzewa

rezolucji

Rozważmy następujący przykład, wiemy że:
Gdzie jest Jaś, tam jest Rafik. (∀x)[JestW(Jaś, x) ⇒ JestW(Rafik, x)]
Jaś jest w szkole. JestW(Jaś, Szkoła)

Chcemy znaleźć odpowiedź na pytanie:
Gdzie jest Rafik? (∃x)[JestW(Rafik, x)]

Formuła logiczna odpowiadająca oryginalnemu pytaniu różni się nieco od niego, ale
dowód znajduje się łatwo:

¬JestW(Jaś,x)∨JestW(Rafik,x) ¬JestW(Rafik,y)
❛❛❛❛❛❛❛❛❛❛❛❛

✁
✁
✁

✁
✁

JestW(Jaś,Szkoła) ¬JestW(Jaś,x)

❡
❡
❡
❡
❡

✟✟✟✟✟✟✟✟✟✟

NIL

Niestety, nie daje on odpowiedzi na pierwotnie postawione pytanie.

Metody oparte na logice — algorytmy pomocnicze 69



Odzyskiwanie odpowiedzi z drzewa rezolucji (c.d.)

¬JestW(Jaś,x)∨JestW(Rafik,x) ¬JestW(Rafik,y)
❛❛❛❛❛❛❛❛❛❛❛❛

✄
✄
✄
✄
✄

JestW(Jaś,Szkoła) ¬JestW(Jaś,x)

❡
❡
❡
❡
❡

✟✟✟✟✟✟✟✟✟✟

NIL ⇒

¬JestW(Jaś,x)∨JestW(Rafik,x) ¬JestW(Rafik,y)∨JestW(Rafik,y)
PPPPPPPPPPPPPPP

✄
✄
✄
✄
✄

JestW(Jaś,Szkoła) ¬JestW(Jaś,x)∨JestW(Rafik,x)

❜
❜
❜
❜
❜
❜

❜
❜

✧
✧

✧
✧

✧
✧

✧
✧

JestW(Rafik,Szkoła)

• Podstawowa procedura zamienia dowód nie wprost na kompletny dowód tezy
wprost.

• Jeśli twierdzenie zawiera alternatywy (po zaprzeczeniu stają się koniunkcjami) to
w wyniku tej procedury otrzymujemy złożoną formułę, która może być trudna do
interpretacji.

• Jeśli twierdzenie zawiera kwantyfikator ogólny to po zaprzeczeniu pojawiają się
w niej stałe lub funkcje Skolema, które lądują w odpowiedzi, ale mogą być
zamienione na zmienne kwantyfikowane uniwersalnie.
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Algorytmy pomocnicze: strategie przyspieszające rezolucję

W dowodzeniu twierdzeń z wykorzystaniem rezolucji w procedurze dowodowej nie
wprost, dążymy do wygenerowania klauzuli pustej, wskazującej na sprzeczność. Aby
mieć pewność, że taką klauzulę wygenerujemy, zakładając, że jest to w ogóle możliwe,
musimy generować rezolwenty w jakiś systematyczny sposób, na przykład realizując
przeszukiwanie wszerz. Jednak przy większych bazach danych, ten sposób może
prowadzić do generowania bardzo wielu wniosków, z których większość może nie mieć
nic wspólnego z dowodzonym twierdzeniem.

Poszukuje się zatem strategii przyspieszających, które pozwoliłyby odciąć i nie
generować niektórych rezolwent. Strategie takie mogą być pełne, tzn. dające
gwarancję znalezienia rozwiązania (fałszu) jeśli to tylko możliwe, albo niepełne, czyli
nie dające takiej gwarancji (ale typowo znacznie skuteczniejsze).
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Strategie przyspieszające:

• preferencja pojedynczych literałów (normalnie niepełna, ale pełna jeśli jest
traktowana tylko jako preferencja)

• strategia zbioru podtrzymania (set of support): tylko rezolucje z klauzulami
z pewnego zbioru, początkowo uzyskanego z zaprzeczonej tezy (pełna)

• rezolucja wejściowa (input resolution) zezwala tylko na rezolucje z użyciem klauzuli
wejściowej (pełna tylko w niektórych przypadkach, np. dla hornowskich baz danych)

• rezolucja liniowa (niepełna)

• eliminacja powtórzeń i specjalizacji (pełna)

Metody oparte na logice — algorytmy pomocnicze 72



Nierozstrzygalność rachunku predykatów

Rachunek predykatów wydaje się językiem reprezentacji dobrze nadającym się do
wyrażania faktów i wnioskowania w systemach sztucznej inteligencji. Należy jednak
zdawać sobie sprawę z pewnych jego ograniczeń, które zawężają jego użyteczność
praktyczną.

Twierdzenie Churcha (1936, o nierozstrzygalności rachunku predykatów): nie istnieje
procedura pozwalająca w ogólnym przypadku sprawdzać prawdziwości formuł rachunku
predykatów. Mówimy, że rachunek predykatów jest nierozstrzygalny (undecidable).

Ta własność w istotny sposób ogranicza możliwości wnioskowania o faktach
wyrażanych w języku predykatów. Co prawda istnieje szereg klas formuł, dla których
procedura decyzyjna istnieje. Poza tym rachunek predykatów ma własność
półrozstrzygalności (semidecidability), co oznacza, że istnieje procedura
pozwalająca stwierdzić niespełnialność dowolnej formuły niespełnialnej w skończonej
liczbie kroków. Niestety, dla formuł, które nie są niespełnialne, ta procedura może
nigdy się nie zatrzymać.
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Niezupełność w rachunku predykatów

Ktoś mógłby myśleć, że nierozstrzygalność rachunku predykatów można pokonać,
korzystając z półrozstrzygalności. Chcąc udowodnić formułę ϕ ze zbioru aksjomatów
∆, uruchamiamy równolegle dwa dowody: ∆ ⊢ ϕ i ∆ ⊢ ¬ϕ. Na mocy
półrozstrzygalności, przynajmniej jeden z tych dowodów powinien zakończyć się
powodzeniem. Niestety, to również może się nie udać.

Twierdzenie Gödla (1931, o niezupełności): w rachunku predykatów można
sformułować teorie niezupełne, czyli takie, w których istnieją formuły zamknięte,
których nie można wywieść, ani nie można wywieść ich zaprzeczenia. Co więcej, takie
teorie są dość proste, na przykład taką teorią jest teoria liczb naturalnych, generowana
opisującym je zbiorem aksjomatów.

Teorię T nazywamy rozstrzygalną jeśli istnieje algorytm pozwalający dla dowolnej
formuły zamkniętej ϕ stwierdzić, czy ϕ ∈ T , czy ϕ 6∈ T . Teorie niezupełne są więc
w oczywisty sposób nierozstrzygalne.

Twierdzenie Gödla ma taki skutek, że jeśli po pewnej liczbie kroków dowodu ∆ ⊢ ϕ

(i, być może, równoległego dowodu ∆ ⊢ ¬ϕ), nadal nie ma rozwiązania, to nie
możemy mieć pewności, czy dowód jednak się zakończy (przynajmniej jeden z nich),
czy mamy do czynienia z teorią niezupełną.
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Zmiany zachodzące w czasie

Rachunek predykatów dobrze spisuje się jako język reprezentacji dla dziedzin
statycznych, gdzie nic się nie dzieje, i wszystko co jest prawdziwe, pozostaje takie na
zawsze. Świat realny niestety taki nie jest.

Na przykład, jeśli formuła: JestW(Jaś, Szkoła) poprawnie opisuje stan bieżący jakiegoś
powszedniego dnia przed południem, to niestety, musimy się liczyć z tym, że Jaś
pójdzie w pewnym momencie do domu. Jeśli aksjomatyka dobrze opisuje skutki działań
agentów, to system mógłby nawet wywnioskować nowy fakt: JestW(Jaś,Dom).
Niestety, wtedy w bazie danych powstanie sprzeczność, która dla systemu logicznego
jest katastrofą. System dowodzenia zawierający fałsz w swoich aksjomatach może
udowodnić dowolne twierdzenie!

Ćwiczenie: załóżmy, że w zbiorze aksjomatów ∆ istnieją, między innymi, dwie klauzule:
P i ¬P . Przedstaw dowód dowolnej formuły Q. Wskazówka: najpierw udowodnij, że
P ∨ ¬P ∨Q jest tautologią (zdaniem zawsze prawdziwym) dla dowolnych P i Q.
Można to sprawdzić wykonując dowód |= (P ∨ ¬P ∨Q), czyli dowodząc tezy
z pustym zbiorem aksjomatów. Następnie dodaj tak udowodnioną tautologię do bazy
∆ i przeprowadź dowód Q.
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Logiki czasowe

Dla rozwiązania problemu reprezentacji zmian stworzono wiele specjalistycznych teorii
logicznych, zwanych logikami czasowymi (temporal logics). Zwykłe fakty wyrażane
w tych logikach zachodzą w określonych momentach czasowych. Natomiast czas, jego
własności, i specjalne reguły wnioskowania dotyczące jego upływu, są w logikach
czasowych wbudowane w teorię (zamiast być reprezentowane jawnie, na równi z innymi
własnościami świata).

Jedną z głównych kwestii, różniących te teorie, jest sama reprezentacja czasu. Może on
być dyskretny lub ciągły, może być określany w postaci punktów lub przedziałów, może
być ograniczony lub nieograniczony, itp. Co więcej, czas może być pojęciem liniowym,
lub rozgałęzionym. Zwykle powinien jednak być uporządkowany, choć istnieją kołowe
reprezentacje czasu.

Dla każdej z takich logik czasowych, aby dało się efektywnie wnioskować o tworzonych
formułach, reprezentujących zjawiska, z którymi ma do czynienia inteligentny agent,
musi istnieć procedura dowodowa. Konstrukcja takiej procedury może opierać się na
rzutowaniu danej teorii do logiki predykatów pierwszego rzędu.
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Rachunek sytuacji

Alternatywą do logik czasowych jest bezpośredni zapis momentów czasowych w języku
reprezentacji. Przykładem takiego podejścia jest rachunek sytuacji:
At(Agent, [1, 1], S0) ∧ At(Agent, [1, 2], S1) ∧ S1 = Result(Forward, S0)

PIT

PIT

PIT

Gold

PIT

PIT

PIT

Gold

S
0

Forward

S
1
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Rachunek sytuacji (cd.)

Rachunek sytuacji wykorzystuje pojęcia: sytuacji, akcji, i fluentów:

sytuacje: sytuacją jest stan początkowy s0, i dla każdej sytuacji s i akcji a sytuacją
jest również Result(a, s); sytuacje odpowiadają sekwencjom akcji i w ten sposób są
różne od stanów, tzn. agent może znaleźć się w danym stanie poprzez różne
sytuacje,

fluenty: funkcje i relacje, które podlegają zmianom w czasie nazywane są fluentami
i posiadają argument sytuacji, typowo jest to ostatni argument,

aksjomaty dopuszczalności akcji: opisują warunki stosowalności akcji, np. dla
akcji Shoot: Have(Agent,Arrow, s) ⇒ Poss(Shoot, s)
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aksjomaty następstwa akcji: opisują następstwa akcji dla wszystkich fluentów, np.
dla akcji Grab aksjomat powinien stwierdzać, że po prawidłowym wykonaniu tej
akcji agent będzie trzymał to co podniósł; należy jednak pamiętać również
o sytuacjach, kiedy fluent nie uległ zmianie w wyniku wykonania jakiejś akcji:

Poss(a, s) ⇒
(Holding(Agent, g, Result(a, s)) ⇔

a = Grab(g) ∨ (Holding(Agent, g, s) ∧ a 6= Release(g))).

aksjomaty unikalności akcji: ze względu na obecność klauzul różności akcji
w aksjomatach następstwa, musimy zapewnić mechanizm pozwalający agentowi
stwierdzać takie fakty, na przykład przez aksjomaty unikalności akcji; dla każdej
pary symboli akcji Ai i Aj musimy zapisać aksjomat (na pozór oczywisty) Ai 6= Aj;
ponadto dla akcji z parametrami musimy zapisać też:

Ai(x1, ..., xn) = Aj(y1, ..., yn) ⇔ x1 = y1 ∧ ... ∧ xn = yn
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Przykład z małpą i bananami — aksjomatyzacja

• wiedza ogólna o świecie i operatorach (częściowa i uproszczona):

A1: ∀p∀p1∀s [At(box, p, s) ⇒ At(box, p, goto(p1, s))]

A2: ∀p∀p1∀s [At(bananas, p, s) ⇒ At(bananas, p, goto(p1, s))]

A3: ∀p∀s [At(monkey, p, goto(p, s))]

A4: ∀p∀p1∀s [At(box, p, s) ∧ At(monkey, p, s) ⇒ At(box, p1,move(box, p, p1, s))]

A5: ∀p∀p1∀p2∀s [At(bananas, p, s) ⇒ At(bananas, p,move(box, p1, p2, s))]

A6: ∀p∀p1∀s [At(monkey, p, s) ⇒ At(monkey, p1,move(box, p, p1, s))]

A7: ∀s [Under(box,bananas, s) ⇒ Under(box,bananas, climb(box, s))]

A8: ∀p∀s [At(box, p, s) ∧ At(monkey, p, s) ⇒ On(monkey,box, climb(box, s))]

A9: ∀s [Under(box,bananas, s) ∧ On(monkey,box, s) ⇒ Havebananas(grab(bananas, s))]

A10: ∀p∀s [At(box, p, s) ∧ At(bananas, p, s) ⇒ Under(box,bananas, s)]

• dane zadania:

A11: [At(monkey, P1, S0) ∧ At(box, P2, S0) ∧ At(bananas, P3, S0)]

• teza do udowodnienia:

∃s(Havebananas(s))

2Przedstawione tutaj rozwiązanie problemu małpy i bananów wzorowane jest na przykładzie z książki Philipa C.
Jacksona Jr.’a: „Artificial Intelligence”.
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Przykład z małpą i bananami — zbiór klauzul

A1: {¬At(box, p, s1),At(box, p, goto(p1, s1))}

A2: {¬At(bananas, q, s2),At(bananas, q, goto(q1, s2))}

A3: {At(monkey, r, goto(r, s3))}

A4: {¬At(box, u, s4),¬At(monkey, u, s4),At(box, u1,move(box, u, u1, s4))}

A5: {¬At(bananas, t, s5),At(bananas, t,move(box, t2, t3, s5))}

A6: {¬At(monkey, v1, s6),At(monkey, v2,move(box, v1, v2, s6))}

A7: {¬Under(box,bananas, s7),Under(box,bananas, climb(box, s7))}

A8: {¬At(monkey, w, s8),¬At(box, w, s8),On(monkey,box, climb(box, s8))}

A9: {¬Under(box,bananas, s9),¬On(monkey,bananas, s9),

Havebananas(grab(bananas, s9))}

A10: {¬At(box, p, s10),¬At(bananas, p, s10),Under(box,bananas, s10)}

A11a: {At(monkey, P1, S0)}

A11b: {At(box, P2, S0)}

A11c: {At(bananas, P3, S0)}

NT: {¬Havebananas(z)}
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Przykład z małpą i bananami — dowód

C1(A1,A11b) {At(box, P2, goto(p1, S0))}

C2(C1,A4) {¬At(bananas, P2, goto(p1, S0)),

At(box, u1,move(box, P2, u1, goto(p1, S0)))}

C3(C2,A3) {At(box, u1,move(box, P2, u1, goto(P2, S0)))}

C4(C3,A10) {¬At(bananas, u1,move(box, P2, u1, goto(P2, S0))),

Under(box,bananas,move(box, P2, u1, goto(P2, S0)))}

C5(A2,A11c) {At(bananas, P3, goto(q1, S0))}

C6(C5,A5) {At(bananas, P3,move(box, t2, t3, goto(q1, S0)))}

C7(C6,C4) {Under(box,bananas,move(box, P2, P3, goto(P2, S0)))}

C8(C7,A7) {Under(box,bananas, climb(box,move(box, P2, P3, goto(P2, S0))))}

C9(A3,A6) {At(monkey, v2,move(box, r, v2, goto(r, r1)))}

C10(C9,A8) {At(box, v2,move(box, r, v2, goto(r, r1))),

On(monkey,box, climb(box,move(box, r, r2, goto(r, r1))))}

C11(C10,C3) {On(monkey,box, climb(box,move(box, P2, u1, goto(P2, S0))))}

C12(C8,A9) {¬On(monkey,box, climb(box,move(box, P2, P3, goto(P2, S0)))),

Havebananas(grab(bananas,

climb(box,move(box, P2, P3, goto(P2, S0)))))}

C13(C11,C12) {Havebananas(grab(bananas,

climb(box,move(box, P2, P3, goto(P2, S0)))))}

C14(C13,NT) {}
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Przykład z małpą i bananami — drzewo dowodu

C8
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C14=[]
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Frame problem

Poprawna reprezentacja zagadnienia wymaga jawnego zapisania efektów działań
agenta w środowisku, jak również zmian wywołanych przez inne czynniki (np. deszcz).
Jednak, jak widzieliśmy w przykładach z wumpusem oraz małpą i bananami, konieczne
jest również sformułowanie aksjomatów niezmienniczości, pozwalające na wnioskowanie
o braku zmiany:

∀a, x, s Holding(x, s) ∧ (a 6= Release) ⇒ Holding(x,Result(a, s))
∀a, x, s ¬Holding(x, s) ∧ (a 6= Grab) ⇒ ¬Holding(x,Result(a, s))

Niestety, w świecie bardziej złożonym niż świat wumpusa, fluentów będzie bardzo
wiele, i aksjomatyka musi opisywać ich zmiany oraz niezmienność, zarówno jako
bezpośrednie, jak i uboczne, efekty wykonywanych akcji.

Te aksjomaty, zwane aksjomatami tła (frame axioms) trudno jest wyrazić w sposób
ogólny, i w znacznym stopniu komplikują pierwotny opis świata.

Ponieważ w czasie pracy agent musi odpowiadać sobie na wiele pytań, prowadząc
dowody logiczne, mnogość aksjomatów powoduje gwałtowne powiększanie się jego
bazy danych, i w efekcie może doprowadzić do kompletnego paraliżu.
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Krótkie podsumowanie — pytania sprawdzające

1. Opracuj opartą na rachunku sytuacji reprezentację dla świata wumpusa,
przedstawionego na początku tego wykładu.
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Problemy z brakiem informacji

Przedstawione dotychczas metody oparte na logice zakładały, że wszystkie informacje
niezbędne do przeprowadzenia wywodów logicznych są agentowi dostępne, i są pewne.
Niestety, nie jest to realistyczne założenie.

Jednym z problemów jest problem niepełnej informacji. Agent może mieć
częściową, ale nie pełną informację o problemie, co często uniemożliwia wyciąganie
potrzebnych wniosków logicznych. Innym problemem jest niepewność informacji.
Agent może mieć dane pochodzące z różnych nie w pełni wiarygodnych źródeł, np.:

• fakty „typowe”,
• fakty „możliwe”,
• fakty „prawdopodobne”,
• wyjątki od faktów ogólnie słusznych.

Posiadanie takich informacji często jest kluczowe dla podejmowania właściwych decyzji.
Ludzie tak postępują, czynią założenia, domniemania, i często potrafią skutecznie je
wykorzystywać. Chcielibyśmy, by agent sztucznej inteligencji podobnie potrafił działać
w braku pewnej informacji, wykorzystać informacje niepełne i niepewne, prowadzić
wywody opierające się na możliwie najlepszych źródłach danych, a także oszacowując
wiarygodność otrzymanych wniosków. Niestety, klasyczna logika predykatów nie
dostarcza takich narzędzi, i nie potrafi robić żadnego użytku z tego rodzaju wiedzy.
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Logika zdrowego rozsądku

Zastanówmy się, jakie informacje człowiek wie na pewno, podejmując decyzje
w codziennym życiu. Wstając rano, ma zamiar pojechać do pracy. Ale jeśli jest jakaś
awaria komunikacji miejskiej, to powinien wstać dużo wcześniej, i najpierw sprawdzić,
czy kursują autobusy. Dzień wcześniej, zakupił produkty, aby przyrządzić z nich
śniadanie. Ale czy wie na pewno, że jego sałatka śniadaniowa jest nadal w lodówce, czy
nie zepsuła się, czy ktoś jej nie wykradł, itp.

Wniosek: logicznie funkcjonujący agent potrzebuje pewnych informacji do swego
działania, i prędzej lub później zostanie sparaliżowany stuprocentową poprawnością
swego mechanizmu wnioskowania. W świecie rzeczywistym nigdy nie będzie w stanie
odważyć się na jakiekolwiek działanie, dopóki nie będzie miał pełnej informacji
o otaczającym go świecie.

Jednak ludzie potrafią sprawnie poruszać się w świecie pełnym informacji niepewnej
i niepełnej, faktów domyślnych i wyjątków. Jak to robią? Musimy uznać, że w swoim
wnioskowaniu ludzie posługują się nieco inną logiką, niż rygorystyczna logika
matematyczna. Możnaby ogólnie nazwać ten hipotetyczny mechanizm wnioskowania
logiką zdrowego rozsądku (common sense reasoning).
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Logiki niemonotoniczne

Część winy za problemy z wnioskowaniem przy użyciu logiki klasycznej ponosi jej
własność określana jako monotoniczność. W logice klasycznej, im więcej wiemy, tym
więcej możemy wywieść stosując wnioskowanie.

Człowiek stosuje inny model wnioskowania, o wiele bardziej elastyczny, wykorzystujący
informację typową, domyślną, możliwą, a nawet brak informacji. Ten rodzaj
wnioskowania wydaje się nie mieć własności monotoniczności.

Na przykład, o ile w braku dobrej informacji o sytuacji człowiek byłby gotów wyciągnąć
pewne wnioski i podejmować decyzje (pochopne), to po zdobyciu pełniejszej informacji
może już nie być w stanie wymyślić dobrego rozwiązania problemu.3

Stąd różne modele wnioskowania, zmierzające do pokonania tych problemów, i bardziej
zbliżone do elastycznego modelu wnioskowania człowieka, określa się wspólnym
mianem logik niemonotonicznych.

3Rozwiązanie, które wypracował wcześniej, w braku informacji, było błędne, ale może było lepsze niż brak jakiegokolwiek
działania. Chociaż niekoniecznie.
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Logiki niemonotoniczne — przykład

Wyzwanie Minsky-ego: opracowanie systemu, który pozwoliłby prawidłowo opisać
ogólnie znany fakt, że ptaki potrafią fruwać.

∀x[bird(x) → canfly(x)]

Aby uwzględnić wyjątki, np. strusie, trzeba każdorazowo modyfikować poprzednią
formułę.

∀x[bird(x) ∧ ¬ostrich(x) → canfly(x)]

Wyjątków jest więcej: ptaki skąpane w rozlanej ropie naftowej, ptaki bez skrzydeł,
chore ptaki, martwe ptaki, namalowane ptaki, abstrakcyjne ptaki, . . .

Pomysł: wprowadzamy operator modalny M:

∀x[bird(x) ∧ M canfly(x) → canfly(x)]

Teraz wyjątki możemy wprowadzać modularnie:

∀x[ostrich(x) → ¬canfly(x)]
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Dla następującego zbioru faktów:

∆ = {bird(Tweety),bird(Sam),ostrich(Sam)}

możemy wywieść: ¬canfly(Sam)
zatem nie powinno nam się udać wyprowadzić:

M canfly(Sam) ani canfly(Sam)

Jednak przy użyciu normalnych procedur nie możemy udowodnić zdolności do latania
Tweety:

M canfly(Tweety),canfly(Tweety)

W tym celu niezbędna jest procedura dowodowa zdolna do efektywnego
(i automatycznego) dowodzenia twierdzeń w języku predykatów rozszerzonym
o operator modalny M, zgodna z następującą regułą wnioskowania:

Not(⊢ ¬p)

M p

Metody oparte na logice — logiki niemonotoniczne 91



Logiki niemonotoniczne — jaka procedura dowodowa?

Pomijając ograniczenia wynikające z odwołania do procedury dowodowej w powyższej
definicji, taka procedura nie będzie jednak ani efektywna obliczeniowo, ani
rozstrzygalna, ani nawet półrozstrzygalna, jak procedury dowodowe dla rachunku
predykatów.

W przesłance powyższej reguły wnioskowania mamy bowiem stwierdzenie, że pewnej
formuły nie da się udowodnić. To po pierwsze może być w ogóle niemożliwe do
stwierdzenia. Zaś aby znaleźć pozytywne potwierdzenie tego faktu będzie na pewno
konieczne przeprowadzenie globalnego wnioskowania na całej bazie danych, bo inaczej
trudno byłoby stwierdzić, że czegoś nie da się udowodnić.

Dla odróżnienia, dowody w rachunku predykatów pierwszego rzędu mają charakter
lokalny. Jeśli np. szczęśliwie wybierzemy od razu właściwe przesłanki to możemy
uzyskać dowód w kilku krokach, nawet jeśli baza danych liczy tysiące faktów.
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Systemy zachowania spójności logicznej (TMS)

Co ma zrobić system wnioskowania logicznego gdy chciałby wycofać jakiś fakt P
posiadany w swojej bazie danych? Na przykład:

• system rejestruje bieżący stan rzeczy (nie uwzględniając upływu czasu ani historii)
i ten stan uległ zmianie

• fakt był wynikiem założenia dokonanego ad hoc (być może w wyniku rozumowania
niemonotonicznego) i obecnie są powody przypuszczać, że w istocie jest
nieprawdziwy

Usunięcie błędnie dokonanego założenia lub nieaktualnego faktu nie może polegać na
dodaniu faktu ¬P , ponieważ to nie wycofałoby błędnego faktu P , a tylko wprowadziło
niespójność bazy danych, zawierającej obecnie zarówno P jak i ¬P . Zamiast tego,
należy usunąć z bazy danych fakt P, oraz wszystkie inne fakty być może z niego
wywiedzione.

Na przykład, jeśli istniała implikacja P → Q, to system mógł, wierząc
w pewnym okresie w prawdziwość P , poprawnie wywnioskować Q.

Jednak fakty takie jak Q niekoniecznie muszą być nieprawdziwe tylko dlatego, że
nieprawdziwe okazało się P . Po jego pierwotnym wywiedzeniu z P system mógł
znaleźć inne, niezależne, potwierdzenia Q.
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Systemy zachowania spójności logicznej (truth maintenance systems), wspomagają
proces wnioskowania przez rejestrację takich zależności logicznych.

Agent

rozwiązujący

problem

aksjomaty
założenia
wnioski

zależności
zapytania

✲

odpowiedzi
✛

System

TMS

Funkcje systemu TMS:

1. przechowywanie faktów i wniosków
2. usuwanie faktów z obsługą konsekwencji
3. ponowne przywracanie faktów i konsekwencji
4. dostarczanie agentowi uzasadnień faktów
5. wykrywanie niespójności w założeniach
6. prowadzenie wnioskowania niemonotonicznego
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W najprostszym przypadku system TMS może realizować swe funkcje przez usuwanie
z bazy danych — w momencie wycofywania dokonanego wcześniej założenia —
wszystkich wniosków otrzymanych przez system. Jest to metoda prosta i skuteczna,
wymaga jednak każdorazowego powtórzenia dowodów wszystkich twierdzeń.

Nieco lepszą metodą jest usuwanie tylko wniosków wywiedzionych po wprowadzeniu do
bazy danych wycofywanego aktualnie założenia. Wymaga to utrzymywania informacji
o chronologii wprowadzania i wyprowadzania faktów, i nadal powtórzenia wielu
dowodów, z których większość mogła nie mieć nic wspólnego z wycofywanym
założeniem.

Jeszcze lepszą metodą jest rejestrowanie, dla wszystkich wniosków, założeń, na których
były oparte ich wywody, a następnie, przy wycofywaniu jakiegoś założenia, usuwanie
uzasadnień, których niezbędną częścią było wycofywane założenie, a także eliminacja
faktów, które straciły wszystkie swoje uzasadnienia.

Metody oparte na logice — systemy TMS 95



Przykład
Agent posiada następujące fakty pewne, oraz, uzyskane w wyniku swojej pracy,
założenia niemonotoniczne i wnioski na nich oparte:

P → R { fakt }
Q → S { fakt }
R → S { fakt }
P { założenie }
Q { założenie }
R { wniosek(P) }
S { wniosek(P), wniosek(Q) }

Gdyby następnie, w trakcie pracy, agent postanowił wycofać się z założenia P,
i poinformował o tym system TMS, to ten skreśliłby fakt R z listy faktów uznawanych
za słuszne, oraz skreśliłby jedno z uzasadnień faktu S.

Gdyby w dalszym ciągu agent wycofałby również założenie Q, to system TMS
musiałby już ostatecznie usunąć fakt S.

Zauważmy, że gdyby agent następnie postanowił jednak przywrócić założenie P, to
system TMS nie miałby sposobu odzyskania usuniętych wniosków R i S.
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System JTMS

Historycznie najwcześniejszy system TMS Doyle’a jest właśnie oparty na
uzasadnieniach (pierwotnie nazwany po prostu TMS, ale później dla odróżnienia od
innych systemów nazywany również JTMS). System ten pamięta dla każdego faktu
jego uzasadnienie, lub uzasadnienia.

System JMS nie usuwa raz utworzonych struktur danych, tylko określa status faktu
jako „in” (fakt, w który wierzymy, bo ma uzasadnienia) albo „out” (fakt, w który nie
wierzymy, bo nie ma uzasadnień).

Gdy status jakiegoś faktu zmienia się na „out”, wtedy uzasadnienia niektórych innych
faktów mogą również zmienić status, powodując propagację konsekwencji takiej
zmiany w strukturach systemu JTMS.

Podobnie, gdy pojawia się jakiś fakt, który miał już poprzednio status „in”, i jest
częścią uzasadnień innych faktów, wtedy wystarczy zmienić status wszystkich takich
uzasadnień i faktów na „in”, i udowodnione wcześniej wnioski automatycznie pojawiają
się znowu (tzw. „unouting”).

Zatem system JTMS utrzymuje stan swojej bazy danych w postaci jednego spójnego
zestawu „wierzeń”, i o każdym stwierdzeniu możemy powiedzieć, czy aktualnie w nie
wierzymy czy nie.
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System ATMS

Innego rodzaju system TMS, oparty na założeniach i nazwany ATMS, zaproponował
Johan de Kleer. ATMS nie etykietuje żadnych faktów jako „in” albo „out”, a tylko
rejestruje wszystkie fakty i założenia w postaci węzłów na jednym grafie zależności.
System zaznacza, na podstawie informacji od użytkownika, które fakty są prawdziwe
przy których założeniach, i nie ma pojęcia w co wierzy w danej chwili.

Użytkownik zgłasza systemowi wszystkie założenia, które go interesują, niezależnie czy
są one wzajemnie spójne. ATMS aktualizuje graf zależności, gdzie etykiety węzłów
zawierają założenia je uzasadniające, i w każdej chwili jest w stanie odpowiedzieć, przy
jakim zestawie założeń dany fakt jest prawdziwy.

Metoda de Kleer’a pokonuje większość problemów związanych z systemami TMS (np.
unouting), i nadaje się szczególnie do implementacji systemów rozważających
alternatywne warianty, gdzie konieczne jest częste przełączanie się między wzajemnie
wykluczającymi się punktami widzenia.

Jest to jednak metodą typowo dyskretną, działającą na niezbyt dużej liczbie założeń,
ponieważ musi uwzględniać wszystkie możliwe ich kombinacje.
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Generacja wyjaśnień

Systemy TMS mogą być również postrzegane jako generatory wyjaśnień. Jeśli dla
danego faktu, który jest obserwowany, istnieje szereg możliwych uzasadnień, z których
żadne nie jest obserwowane ani znane, to agent może analizować te uzasadnienia,
i wybierać te, które np. są minimalne, a przez to najbardziej prawdopodobne,
i skoncentrować się na znalezieniu przyczyny obserwowanej sytuacji.

Na przykład, jako uzasadnienie faktu, że nie da się uruchomić silnika samochodu,
możemy mieć zapisaną niesprawność akumulatora, oraz jeszcze szereg innych
możliwych przyczyn. Gdyby agent miał problemy z samochodem, i chciał określić jego
przyczyny, mógłby zacząć analizować zbiory uzasadnienień takiej awarii, i na tej
podstawie próbować wybrnąć z sytuacji. Na przykład, mógłby uporządkować te zbiory
uzasadnień według liczności, i zacząć od najmniejszych, wychodząc z założenia, że
najmniejszy zbiór uzasadnień związany jest z najprostszą okolicznością i przyczyną
awarii. Zatem próby wybrnięcia z opresji mógłby nasz agent zacząć od sprawdzenia
akumulatora, gdyby to on właśnie stanowił najprostsze w tym sensie wyjaśnienie awarii.
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Problemy z metodami opartymi na logice

Podejście logiczne do reprezentacji wiedzy i rozwiązywania problemów budziło swojego
czasu wiele emocji i nadziei na budowę wszechstronnych systemów sztucznej
inteligencji. Istnieją jednak poważne przeszkody ograniczające zastosowanie tej metody
do rozwiązywania problemów praktycznych:

• eksplozja kombinatoryczna procedury dowodowej — istnieją strategie
usprawniające, jednak niewiele pomagają; jednocześnie trudno jest połączyć metody
formalne z dostępną informacją heurystyczną

• nierozstrzygalność i gödlowska niezupełność rachunku predykatów

• wnioskowanie z uwzględnieniem zmian — rachunek sytuacji, logiki czasowe

◦ pojawia się tu problem tła (frame problem) — poza określeniem co się
zmieniło, konieczne jest śledzenie tego co się nie zmieniło

• wnioskowanie z użyciem informacji niepełnej i/lub niepewnej — inne wyzwanie
dla metod formalnych, jednak nieodzowne w działaniu człowieka

◦ uwzględnienie informacji niepełnej prowadzi do wnioskowania
niemonotonicznego, którym ludzie posługują się sprawnie, podczas gdy
tradycyjna logika matematyczna jest ściśle monotoniczna
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Zastosowanie metod opartych na logice

Wymienione problemy z metodami opartymi na logice istotnie utrudniają ich
wykorzystanie jako platformy budowy inteligentnych agentów. Powszechnie
wykorzystywany w sztucznej inteligencji jest jedynie sam język logiki pierwszego rzędu
jako język zapisu faktów.

Jednak w pewnych konkretnych zastosowaniach, w ograniczonych dziedzinach,
powyższe problemy mają mniejsze znaczenie, i można skutecznie korzystać z tej
metodologii.
Do tych zastosowań należą:

• synteza i weryfikacja programów, inżynieria oprogramowania,

• projektowanie i weryfikacja cyfrowej elektroniki obliczeniowej, w tym projektowanie
układów VLSI,

• dowodzenie twierdzeń w matematyce; pozwala poszukiwać dowodów postulowanych
twierdzeń, dla których nie udaje się znaleźć dowodu metodą tradycyjną.
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