
Preferences and utility functions

The probability values computed using the Bayesian belief networks provide information
about relative probabilities of various events, possible effects of agent’s actions, etc.
However, they do not help much in making decisions based on this information.

For example, is an action plan that guarantees the achievment of 90% of the goals
with a probability of 0.95 better than another plan that guarantees the achievment of
95% of the goals with a probability of 0.90?

Clearly, this does not depend on probabilities, but on what the agent prefers.

An intelligent agent must have a representation of her preferences for making
decisions. To represent these preferences, we will use the idea of a utility function
U (S) which designates how much an agent prefers a certain state. Clearly, such utility
is relative, and can only be determined for a specific agent.
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The MEU principle

Consider an intelligent agent, having her preferences described with utilities, and using
probabilities for evaluating the information she possesses and the possible outcomes of
her actions. We will assume, that she acts rationally if she chooses actions with the
highest expected utility averaged over all possible outcomes of such actions.

The expected utility EU (s, a) of a non-deterministic action a applied by the agent
in state s with the set of possible outcomes Result(s, a) and a probability
distribution P (s′|s, a) of reaching a state s′ ∈ Result(s, a), is given as:

EU (s, a) =
∑

s′∈Result(s,a)
P (s′|s, a) × U (s′)

The principle of maximum expected utility (MEU) says that a rational agent
should choose the action that maximizes the agent’s expected utility:

action(s) = argmax
a

EU (s, a)

Note that maximizing expected utility is just an assumption we make. A particular
agent might instead want to minimize her worst possible loss, for another example.
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Lotteries and preferences

An intelligent agent must have a clear system of preferences, but it is not always
specific and fully defined states that she must decide between. On the contrary, when
making decisions under uncertainty the outcomes of any decision are usually uncertain
either way. We will call the results for each action a lottery L, with a set of possible
outcomes S1, . . . , Sn that occur with probabilities p1, . . . , pn.
Each outcome Si of a lottery can be a specific state, or another lottery.

For example, a lottery L with two possible outcomes:
A with probability p and B with probability 1 − p we
can denote as:

L = [p, A; 1 − p, B]

L

p

1−p

A

B

As a basis for selecting between lotteries, or states, the agent will use preferences:

A ≻ B − A is preferred over B

A ∼ B − there is no clear preference between A and B

A ≻∼ B − A is preferred over B or there is no preference
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The axioms of the utility theory

We will assume that the agent’s preferences have to satisfy the following properties,
called the axioms of the utility theory:

orderability
(A ≻ B) ∨ (B ≻ A) ∨ (A ∼ B)

transitivity
(A ≻ B) ∧ (B ≻ C) ⇒ (A ≻ C)

continuity
A ≻ B ≻ C ⇒ ∃p [p, A; 1 − p, C] ∼ B

(Continuity means, that if in some state B is in between A and C in preference,
then there is some probability p for which the agent will be indifferent between
getting B (for sure), and a lottery between A and C with probabilities p and 1 − p.)
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substitutability

A ∼ B ⇒ [p, A; 1 − p, C] ∼ [p, B; 1 − p, C]

(If an agent is indifferent between two lotteries, A and B, then it is also indifferent
between two more complex lotteries, which are the same except that B is
substituted for A in one of them. This holds regardless of the probabilities and the
other outcomes in the lotteries.)

monotonicity

A ≻ B ⇒ (p ≥ q ⇔ [p, A; 1 − p, B] ≻∼ [q, A; 1 − q, B])

(If and agent prefers A over B, then for two lotteries with possible outcomes A and
B it also prefers the one which gives the outcome A with a higher probability B.)

decomposability

[p, A; 1 − p, [q, B; 1 − q, C]] ∼ [p, A; (1 − p)q, B; (1 − p)(1 − q), C]

(Compound lotteries can be reduced to simpler ones using the laws of probability.)
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The meaning of the axioms

The axioms of the utility theory are constructed so, that violating them must be
associated with an overtly irrational behavior.

Consider an agent with a preference system violating the transitivity axiom:
A ≻ B ≻ C and C ≻ A:

If B ≻ C, then an agent at C should be willing to pay
1 (euro)cent to reach B.

If A ≻ B, then an agent at B should be willing to pay
1 (euro)cent to reach A.

If C ≻ A, then an agent at A should be willing to pay
1 (euro)cent to reach C.

Such an agent could be induced into giving away all her money as a consequence of
her preferences.
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Utility functions

The axioms of the utility theory do not say anything about utilities, but only
preferences. We will consider such preferences, satisfying the above axioms, to be the
basic property of rational agents, and the starting point to determine utilities.

Fact: for a set of agent’s preferences satisfying the preference axioms there exists
a real-valued function U defined for the set of lotteries U : L → ℜ, such that:

U (A) > U (B) ⇔ A ≻ B

U (A) = U (B) ⇔ A ∼ B

For a lottery with the outcomes S1, ..., Sn and their respective probabilities p1, ...pn,
this utility function assumes the value:

U ([p1, S1; ...; pn, Sn]) =
∑

i
piU (Si)

In other words, once the utilities of the component lotteries are specified, and their
probabilities are known, the utility of a compound lottery is determined.
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The above fact stating that the utility function exists for an agent with a rational set
of preferences does not allow to derive it directly, or even mean that it is unique. On
the contrary, it is easy to see that the behavior of an agent with a utility function
U (S) would not change if her utility function was replaced with another one:

U ′(S) = aU (S) + b

where a and b are constants with a > 0. So there are always multiple utility functions
which equally well represent a specific agent’s preferences.

Utility functions vs. preferences

In summary, the utility functions provide a technique by which we can model an
intelligent agent’s preferences, to mimic her decision making. The agent herself does
not have to define or compute the utility function. The basis for her decision making
are always her preferences.
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Utility theory with respect to money

Consider the various possible utility functions for the states associated with having
some specific sums of money. It is rational to assume that such functions will be
monotonic for the specific (certain) values. But what about lotteries?

For an example, let us assume we won a T.V. competition and are offered a
prize of one million dollars, or, alternatively, a flip of a coin. It the coin comes up
tails we shall receive three million dollars, but if it comes up heads, then we
receive nothing. Most people would choose to pocket the million in this case,
but if we compute the expected monetary value (EMV) of the gamble
variant then we obtain

1

2
($0) +

1

2
($3, 000, 000) = $1, 500, 000

while the EMV for the sure choice is $1, 000, 000.
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How can we interpret this result? Let us try to compute the utilities of the possible
outcome states. Denoting by Sk the state in which we initially own $k, we have:

EU (coin flip) =
1

2
U (Sk) +

1

2
U (Sk+3,000,000)

EU (pocket $1M) = U (Sk+1,000,000)

To determine the utility of being in possession of various sums of money we may
assume, that the utility gain for the first million is higher then the difference between
one and three millions, eg.: U (Sk) = 5, U (Sk+1,000,000) = 8, U (Sk+3,000,000) = 10. In
this case we obtain EU (coin flip) = 7.5 and we now have the basis to accept the
certain million.

On the other hand, if we had many millions of dollars already, then these values could
possibly come out different, and perhaps it could turn out that selecting the coin flip
would turn out advantageous.
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St.Petersburg paradox

Assume we are offered participating in a game (Bernoulli, 1738), in which we
repeatedly flip a coin until it comes up heads. At that point the game ends and we win
$2n if the heads comes first on the n-th throw. Clearly, it is good to play this game.
The question is, however, how much would we be willing to pay for the opportunity to
play it? Since the probability of getting heads on the n-th throw is 1/2n, so:

EMV(St.P.) =
∑

i
P (Headsi)MV(Headsi) =

∑

i

1

2i
2i =

2

2
+

4

4
+

8

8
+ · · · = ∞

Does it mean that we should be willing to pay any (definite) amount of money? This
does not sound rational, and so thought Bernoulli, who proposed using a logarithmic
utility function for money, U (Sk) = log2 k, by which we obtain:

EU (St.P.) =
∑

i
P (Headsi)U (Headsi) =

∑

i

1

2i
log2 2i =

1

2
+

1

4
+

1

8
+ · · · = 1
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The students’ utility of money

For each value x, let us determine, by voting, the probability p, at which half of the
class prefers the lottery [p, $10, 000; (1 − p), $0] over the certain payout of $x:

p

$x
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 3000 4000 5000 6000 7000 8000 9000 100001000 2000

Making simple decisions — utility of money 12



The curves of the utility of money

It is accepted, that the utility of money is a logarithm-like function, which is concave
for the positive monetary values. In some research the specific utility function of money
was determined for some person, which can be approximated by the formula
U (Sk) = −263.31 + 22.09 log(k + 150, 000) in the range between −$150, 000 and
$800, 000:

+U

+$

−150,000 800,000

o

o
o

o
o

o
o o o o o o o o

o

For small negative values the function remains concave, since being in debt usually
causes a state of panic with most people. However, for very large amounts of money
the function will start to saturate, as the negative perception of a debt does not rise
linearly with the debt amount.
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Back to the positive monetary values, we may conclude that the agents having a
concave utility function will generally prefer obtaining the expected value of a lottery
(for sure) over participating in the lottery:

U (SL) < U (SEMV(L))

Such behavior may be termed risk-averse. A convex (range of) utility function may
be termed risk-seeking. In any small range the utility function is typically almost
linear, and for such function the behavior is termed risk-neutral.
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Irrationality

Accepting a concave, logarithm-like function of the utility of money does not explain
the whole psychology of economic decision-making by humans. It turns out they
constantly violate the axioms of the utility theory. For example, given the choice
between lotteries A or B, and C or D:

A: 80% of winning $4000 C: 20% of winning $4000
B: 100% of winning $3000 D: 25% of winning $3000

the majority of people choose B over A, but C over D. However, assuming
U ($0) = 0, the first choice implies 0.8 × U ($4000) < U ($3000), while the second
choice means exactly the opposite.

One possible explanation of this is simply inadequacy of the utility axioms to describe
human behavior. But another possibility is that it does not take into account the
regret. People know, that in the case of lottery A they will feel stupid if they choose,
and then loose this lottery knowing, that they could choose the safe and profitable
(though not as much) lottery B. In the case of C versus D this regret does not apply,
so the behavior is rational.
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Normalized utility functions

We have previously noted, that the utility axioms do not unambiguously determine the
utility function from the preferences alone. An agent using the utility function:
U ′(S) = k1 + k2U (S) where k1 and k2 are constants (k2 > 0), will behave and act
identically to an agent with the function U (S), if both agents use the same set of
beliefs about their environment.

The utility function may then be scaled and shift up or down by a constant amount,
and the behavior of an agent will not change. Agents may therefore use a normalized
utility function.

Let us denote by u⊥ the utility of the state of the „worst disaster” u⊥ = U (S⊥) for the
original utility function U (S), and by u⊤ the utility of the state of the „highest
reward” u⊤ = U (S⊤). Then for the normalized utility function U ′ we will take
U ′(S⊥) = 0 and U ′(S⊤) = 1, and the utilities of the intermediate states U ′(S) we will
determine asking the agent to give the probability p, for which the agent is indifferent
between the state S and a standard lottery [p, S⊤; (1 − p), S⊥]

U ′(S) = p, when S ∼ [p, S⊤; (1 − p), S⊥]
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Making decisions

The Bayesian belief networks provide answers about the probability distributions of any
random variables, assuming prior knowledge about any combination of other variables.
Having the distributions of utilities make it possible to use this knowledge, on the
grounds of the MEU principle.

Consider an important decision: when leaving home, should I take an umbrella? It will
be useful only in the rain. Otherwise it is clumsy to carry and can get lost. But how do
I know if it will rain? A weather forecast can be helpful.

Weather P(W)

sunny 0.7

rainy 0.3

Forecast P(F|sunny) P(F|rainy)

good 0.8 0.1

bad 0.2 0.9

Weather Forecast

On a side note, this network provides an interesting example of a probabilistic
dependency which goes backward to the chronological sequence. The weather
influences the forecast, even though the forecast comes earlier.
How is it possible? Ask a meteorologist.
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Influence diagrams

Both the action to consider and the utilities of the situations can be added to the
belief network graph as special action and utility nodes. There should be links from
appropriate chance nodes and action nodes to the utility nodes.

Weather P(W)

sunny 0.7
rainy 0.3

Forecast P(F|sunny) P(F|rainy)

good 0.8 0.1
bad 0.2 0.9

Umbrella

Weather Forecast

Utility

Umbrella

take

leave

Weather sunny sunny rainy rainy

Umbrella take leave take leave

Utility 20 100 70 0

Such extended belief networks are called influence diagrams, or elsewhere decision
networks. Some computer tools for building and processing belief networks also
support influence diagrams like this.
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Computing a decision

First consider the case, when there is no additional information.

Weather P(W)

sunny 0.7

rainy 0.3

Forecast P(F|sunny) P(F|rainy)

good 0.8 0.1

bad 0.2 0.9

Umbrella

Weather Forecast

Utility

Umbrella

take
leave

Weather sunny sunny rainy rainy

Umbrella take leave take leave

Utility 20 100 70 0

EU(leave) = P (sunny) ∗ U(leave, sunny) + P (rainy) ∗ U(leave, rainy)

= 0.7 ∗ 100 + 0.3 ∗ 0

= 70

EU(take) = P (sunny) ∗ U(take, sunny) + P (rainy) ∗ U(take, rainy)

= 0.7 ∗ 20 + 0.3 ∗ 70

= 35

The utility of leaving the umbrella home is greater in this case.
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Suppose now the forecast is for bad weather. Querying the network for the probability
distribution of the weather gives: P (sunny, rainy|bad) ≈ (0.34, 0.66).

Weather P(W)

sunny 0.7

rainy 0.3

Forecast P(F|sunny) P(F|rainy)

good 0.8 0.1

bad 0.2 0.9

Umbrella

Weather

Utility

Forecast=bad

Umbrella

take
leave

Weather sunny sunny rainy rainy

Umbrella take leave take leave

Utility 20 100 70 0

EU(leave|bad) = P (sunny|bad) ∗ U(leave, sunny) + P (rainy|bad) ∗ U(leave, rainy)

= 0.34 ∗ 100 + 0.66 ∗ 0

= 34

EU(take|bad) = P (sunny|bad) ∗ U(take, sunny) + P (rainy|bad) ∗ U(take, rainy)

= 0.34 ∗ 20 + 0.66 ∗ 70

= 53

This time the decision should be to take the umbrella along.
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Short review

1. Consider a patient with some probability of a malignant cancer and considered for
a radical therapy. The situation is presented in the following influence diagram with
a partially filled-in patient utility values.

(a) Fill in the missing utilities in a rational way, and justify why you chose such
values.

(b) Compute the cancer probability that switches the therapy decision.

utility
Patient’s

Malignant
cancer

Radical
therapy

Malignant Radical Patient

cancer therapy utility

N N 100

Y N 0

N Y

Y Y
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2. Consider a student approaching an examination, and can either study hard, or take
it easy, counting on her good luck.

(a) Consider two different alternative attitudes toward life and hard work, and assign
their corresponding utilities in the range from 0 to 100.

(b) For the selected course, determine the prior probability of passing the exam, and
with the two described attitudes compute the study decision according to the
MEU principle.

(c) Next, treating the study decision as an independent random variable, determine
the conditional probability distribution for passing the exam selected before. Set
the prior probability of studying and compute the expected values of the utility
for the two described attitudes.

utility
Student’s

exam
Passed

Studied

hard

Passed Studied Student

exam hard utility

N N

Y N

N Y

Y Y
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3. Consider purchasing car insurance. It is generally better to have insurance, although
it can be questioned in case we did not have an accident. Let us assume the
following model of the situation:

utility
Driver’s

Buy
insurance

accident
Have

Buy Have Driver’s
insurance accident utility

N N 100

Y N 100

N Y 5

Y Y 25

Now, “accident” is a generalization of different kinds of accidents, with varying
consequences. We want to create a more detailed model, which distinguishes two
distinct types of accidents: a minor collision, and a fatal accident in which people
are seriously injured or killed. Make some reasonable assumptions and fill in the
missing utilities in a way that is consistent with the previous model.

utility
Driver’s

Buy
insurance

accident
Fatal

accident
Minor

Buy Minor Fatal Driver’s

insurance accident accident utility

N N N 100

Y N N 100

N Y N

Y Y N

N N Y

Y N Y

N Y Y

Y Y Y
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Multiple actions and multiple utilities

There are typically many chance nodes in a belief network, since this is essentially its
primary purpose — to simplify the calculations of conditional probabilities in complex
cases.

However, it is perfectly normal to have exactly one decision and one utility node in
a network. This is because a belief network typically represents a situation to make
a single decision. Also, to select the decision unambiguously, it is best to have a single
criterion.

But multiple action nodes are perfectly possible in an influence diagram. They
represent a situation, when the agent must make just one of these decisions, or must
make in one step a joint decision, based on the information in the network. They do
not permit to compute a sequence of decisions, when the consequences of one action
affect the choice of another.

On the other hand, multiple utilities, if present, must be aggregated using one of the
multiattribute utility models described below.

Making simple decisions — computing decisions 25



Symptoms Test results Outcome

Disease

Suffering

Testing Treatment

Doctor’s utility Patient’s utility

From the above network a doctor can prescribe additional tests, or make a treatment
decision, regardless of whether test results are available or not. Prescribing tests and
deciding a treatment based on the test results cannot be computed in one step.

Let’s note the separate utilities computed from the patient’s and the doctor’s point of
view. While the final outcome is important for both, they consider additional factors,
but different, and in different ways (eg. the patient’s suffering and the doctor’s
prestige). The decisions based on them could be different.
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Multiattribute utilities

In many practical problems one needs to consider many criteria for the correctness of
the decisions being made. In other words, multiple utility functions may exist taking
into account different attributes of the states under consideration.

For an example, consider a problem
of siting a new airport for some city.
Many factors need to be taken into
account: the cost of the land,
increased road traffic, local weather
conditions, and other threats. For
each possible site one can determine
the critical attributes: the total cost,
the increase in accidents (deaths),
the noise, etc.

U

Airport Site

Deaths

Noise

Cost

Litigation

Construction

Air Traffic
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Multiattribute utility functions

We will try to describe a model for making rational decisions for the multiattribute
problems. We shall denote the attributes by X1, X2, ... and their values by x1, x2, ....
For simplicity we assume that the higher attribute values correspond to higher utility
values, with respect to the given attribute.

Assuming there exist utility functions for all the attributes: f1(x1), f2(x2), ... we may
try to express the global utility function with the formula:

U (x1, x2, ...xn) = f(f1(x1), f2(x2), ..., fn(xn))

However, in many cases the f() function is hard to express. Therefore we shall first
examine some special cases.
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Strict dominance

A strict dominance case we will call a situation where one choice B has all the
attributes better than another choice A. For example, one siting B for the airport may
be cheaper, safer, and cause less negative impact for the environment and people than
A. In such case, we can strike the solution A right off from further considerations.
However, it is not possible to make such decisions between possibilities A and C or A
and D (diagram on the left):

1X  

2X  

A

BC

D

1X  

2X  

A

B

C

This region
dominates A

Deterministic attributes Uncertain attributes

In general, definite values of the attributes may not be known. But a strict dominance
may also occur in the probabilistic case, when all choices result in certain probability
distributions of the attribute values (diagram on the right).
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Stochastic dominance

Strict dominance may not occur frequently in practical problems. In some cases one
can take advantage of a more general case of stochastic dominance.
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For example, if the siting cost of an airport at S1 was estimated with the normal
distribution with the expected value of $3,700M and the variance of $400M, and at
site S2 with the normal distribution with the expected value of $4,000M and the
variance of $350M, then S1 dominates stochastically S2, which can be seen in the
cumulative distributions.
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If the agent considers two possible actions A1 and A2, which lead to probability
distributions p1(x) and p2(x) for the attribute X , then we can say that A1 dominates
stochastically A2 if:

∀x
∫ x
−∞ p1(x

′)dx′ ≤
∫ x
−∞ p2(x

′)dx′

In the extreme case, for one of the cases (outcome of the action A2) the value x2 of
attribute X may even be certain (ie. with 100% probability), which does not mean
that A2 should be preferred, nor that preferred should be action A1 with the outcome
as a probability distribution for the attribute X .

Depending on the specific distribution the uncertain action may stochastically
dominate the certain action, or the other way around.
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Multiattribute utilities — the deterministic case

In a general case no dominance may occur, and computing multiattribute preferences
is harder. However, it can often happen that the state attributes X1 and X2 are
preferentially independent of X3, if the preferences between 〈x1, x2, x3〉 and
〈x1′, x2′, x3〉 do not depend on the specific value of x3.

If each pair of the attributes Xi and Xj is preferentially independent of each of the
remaining attributes Xk, then this set of attributes has the property of mutual
preferential independence (MPI).

It turns out, that in such case there exist an additive value function describing an
agent’s preferences:

V (S) =
∑

i
Vi(Xi(S))

In many practical cases this function can properly model the preferences and make
correct decisions.
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Multiattribute utilities — the probabilistic case

The MPI property can be extended to lotteries: a set of attributes X is utility
independent from the set of attributes Y, if the preferences between the lotteries on
the attributes from X are independent of the specific values of the attributes from Y.
A set of attributes is mutually utility-independent (MUI), if each subset of its
attributes is utility independent from the other attributes.

For attributes which are MUI the agent’s behavior can be described using
a multiplicative utility function, which for a three attribute case can be written as:

U(S) = k1U1(X1(S)) + k2U2(X2(S)) + k3U3(X3(S))

+ k1k2U1(X1(S))U2(X2(S)) + k2k3U2(X2(S))U3(X3(S)) + k3k1U3(X3(S))U1(X1(S))

+ k1k2k3U1(X1(S))U2(X2(S))U3(X3(S))

In some specific cases there also exists a purely additive utility function.
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The value of information

So far we assumed that our hypothetical intelligent agent has unlimited access to all
the available knowledge about the world. This assumption is not very realistic. In the
practical cases of making decisions one of the important and very difficult questions to
answer is which questions pertaining the problem under considerations should the
agent try to find answers to.

For example, consider a doctor, who does not have all the information about the
patient when he becomes familiar with the case. Prescribing some tests to gain
more information about a patient may lead to a better diagnosis statement, but
on the other hand it is costly, and also delays the commencement of the
treatment.

The importance of information depends on two factors: (1) whether various possible
outcomes will significantly affect the decision, and (2) the probabilities of different
outcomes.

The value of information theory allows to make decisions about which information the
agent should collect.
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Value of information — an example

Assume a drilling company considers the possibility of buying drilling rights in one of n
identical ocean blocks. Further assume, that it is known that exactly one of the blocks
contains oil worth C dollars, and that the price of one block is C/n. Note that the
expected value of the profit EP from this transaction is 0:

EP = 1
n

(

C − C
n

)

+ n−1
n

(

−C
n

)

= 0

Suppose now, that a geologist comes along, claiming he knows for sure whether one
specific block has oil or not. What could be the value of such information?

Let us consider all the cases. With probability 1
n the selected block has oil, and in such

case the company will surely buy it and make C less C/n for the drilling rights. With
probability n−1

n the block does not have oil, and, knowing that, the company will buy
another block which may have oil with probability 1

n−1, to make an expected
C/(n − 1) dollars, again less C/n:

EP ′ = 1
n

(

C − C
n

)

+ n−1
n

(

C
n−1 − C

n

)

= C
n

Conclusion: information has value, which in this case is equal to the worth of the
drilling rights to the block.
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Value of perfect information

Assume the current knowledge is E and the agent’s goal is to select the best action α
from all possible actions A. We determine the expected value of the utility of this
action (averaged over the action’s possible outcomes Resulti(A)):

EU (α|E) = max
A

∑

i
U (Resulti(A))P (Resulti(A)|Do(A), E)

If the agent gained additional knowledge about the value of some random variable Ej

then the expected utility value of such action would be: αEj :

EU (αEj|E, Ej) = max
A

∑

i
U (Resulti(A))P (Resulti(A)|Do(A), E, Ej)

However, since the Ej is a random variable with an unknown value, we must base our
decision of whether to acquire the knowledge of its value, by taking into account all
the possible values, and what we know about them already. The value of perfect
information (VPI) about a variable Ej can be computed as:

VPIE(Ej) =






∑

k
P (Ej = ejk|E)EU (αejk

|E, Ej = ejk)




 − EU (α|E)

Making simple decisions — value of information 37



For example, consider an agent having the choice of two actions A1 and A2, and their
utilities with probability distributions with expected values U1 and U2. Gaining some
additional information Ej will cause the expected utilities of these actions to U ′

1 i U ′
2.

Knowing the values of: U1, U2, and U ′
1, U ′

2, we may make the decision of whether it is
worthwhile to acquire the information.

P ( U | E )jP ( U | E )jP ( U | E )j

(a) (b) (c)

U U U
U  1U  2 U  2U  2 U  1U  1

In the (a) case the difference in expected utilities of these actions is large, so having
additional information may not make the agent change her choice of action; thus the
value of information is nil. In (b) the difference in the expected values is small, but
their variances are large, so the additional information may, by removing some
uncertainty, help choose a significantly better action. In (c) the variances are small, so
the uncertainty is small, as is the difference between the two actions, and acquiring
new information may again not be worthwhile.
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Example: the value of a weather forecast

Recall the weather and umbrella example considered before. We had computed:

MEU(Umbrella) = max
a

EU(a) = 70 (see slide 19)

MEU(Umbrella|bad) = max
a

EU(a|bad) = 53 (see slide 20)

We can also compute the utility of the best action for the good weather case (which
should obviously be: „leave” since this decision prevailed even for zero information
case):

Umbrella

Weather

Utility

Forecast=good

MEU(Umbrella|good) = max
a

EU(a|good) = 95
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To compute the value of a weather forecast, we need to know the probability
distribution of the Forecast variable. This can be obtained by querying the belief
network: P (good, bad) ≈ (0.59, 0.41).

VPIE(Ej) =





∑

k
P (Ej = ejk|E)EU(αejk

|E, Ej = ejk)



 − MEU(α|E)

VPI(Forecast) = P (good)EU(αgood|good) + P (bad)EU(αbad|bad) − MEU(α)

= P (good)MEU(good) + P (bad)MEU(bad) − MEU(α)

= 0.59 ∗ 95 + 0.41 ∗ 53 − 70

= 7.78

For the utility distribution defined for this problem the value of the weather forecast is
7.78, expressed in the utility units. If we could purchase a forecast with the reliability
as considered in the computation, for a price not exceeding this value, then it would be
profitable to do so, to make better umbrella decisions.
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Properties of the value of information

Fact: the value of information is non-negative.

It can reach zero if, for example, the knowledge of other facts renders some
information useless. So the value of information is not additive.

In turn, the value of knowledge of the values of two random variables
does not depend on the order of acquiring these data. If the agent knows the values of
Ei and Ej then the conclusions it may make from this combined knowledge does not
depend on when and in which order it was acquired.

V PIE(Ej, Ek) = V PIE(Ej) + V PIE,Ej
(Ek) = V PIE(Ek) + V PIE,Ek

(Ej)

The value of two different pieces of information may be different, and the agent might
try to evaluate which information would bring the higher profit (less their cost).
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Shortsighted information-gathering agent

An intelligent agent should ask questions of the user in a reasonable order, avoid
asking irrelevant questions, take into account the value of information relative to its
cost, and stop asking questions when it no longer makes sense. These capabilities can
be achieved using the value of information as a guide.

A reasonable algorithm for an agent: select an information, which has the highest net
value (its value of perfect information less the cost to acquire it), and if this value is
positive then opt for acquiring this information. If it is negative, then proceed to the
proper activities (non information gathering).

This agent algorithm is shortsighted, or myopic, since it is based on the consideration
of acquiring only one variable, when gaining several data in turn could give the agent
more advantage. This is somewhat analogous to greedy search algorithms, and likewise
may be successful in some practical cases.

In a general case, and intelligent agent should consider various subsets of random
variables, and corresponding information requests with their possible outcomes.
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Short review

1. For the cancer patient case from the question on slide 21, and the utilities proposed
therein, compute the value of perfect information about the cancer variable.
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