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Algorytm k-means
Bardzo prosta, popularng i skuteczng metoda analizy skupien jest algorytm k-means.

Oparty jest na poréwnywaniu odlegtosci i wyznaczaniu skupien reprezentowanych przez
ich srodki geometryczne — centroidy, minimalizujagcych pewnga funkcje jakosci.

Algorytm zaktada, ze liczba skupien K, ktére nalezy wygenerowac jest znana. Algorytm
wykonuje powtarzalnie dwa kroki: krok etykietowania i krok przesuniecia centroidow.

Algorytm k-means:
Krok 0 (inicjalizacja): ustaw wartosci poczatkowe wszystkich K centroidéw
REPEAT {

Krok 1 (etykietowanie): oznacz wszystkie probki etykieta najblizszego centroidu

Krok 2 (przesuniecie centroidéw): przesun wszystkie centroidy do
geometrycznego Srodka ich skupien

}
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Algorytm k-means — kryterium jakosci

Algorytm k-means usituje znalez¢ minimum pewnej funkcji kosztu, ktora jest miarg
jakosci wygenerowanego zbioru skupien. Ta funkcja kosztu jest wazong sumg odlegtosci
wszystkich punktow od centroidow ich skupien.

Mozna zauwazy¢, ze pierwszy krok algorytmu (etykietowanie) dokonuje optymalizacji
tej funkcji kosztu ze wzgledu na sktadowe odlegtosci, przy zachowaniu aktualnych
centroiddw.

Drugi krok algorytmu (przesuniecie centroidéw) dokonuje optymalizacji tej same;
funkcji ze wzgledu na potozenie centroidow, przy zachowaniu aktualnych zbioréw
punktow wszystkich skupien.

Uczenie nienadzorowane — algorytm k-means 6



Algorytm k-means — pomiar odlegtosci

Mozna stosowac rézne miary do obliczania odlegtosci w algorytmie k-means:

euklidesowa \/Ei(az’ — b;)?
Manhattan ¥ |a; — byl
max max; |a; — b

Ogolnie: ze wzgledu na mozliwa rozbieznos¢ wielkosci, podobnie jak w przypadku

innych metod opartych na obliczaniu odlegtosci, poszczegdlne wspdtrzedne nalezy
skalowac do obliczania odlegtosci w przestrzeni cech. Wspodtczynnikiem skalowania
moze byC wariancja wartosci danej wspotrzednej na zbiorze treningowym.

Specjalnym problemem s3 dane nienumeryczne. W niektérych przypadkach, jak np.
napisy tekstowe, istnieje szereg metryk dla nich dedykowanych Przyktadami prostych
metryk odlegtosci stringdw s3: odlegtos¢ Hamminga i odlegtos¢ Levenshteina.

Odlegtos¢ Hamminga (tylko dla stringdéw réwnej dtugosci) = liczba pozycji znakowych,
na ktérych stringi sie réznig. Jest ona réwna minimalnej liczbie podmian pojedynczych
znakéw potrzebnej do przeksztatcenia jednego stringa w drugi.

Odlegtos¢ Levenshteina (dla dowolnych stringdw) = minimalna liczba podmian,

wstawien, oraz usunie¢ pojedynczych znakow potrzebna do przeksztatcenia jednego
stringa w drugi.

Uczenie nienadzorowane — algorytm k-means 7



Algorytm k-means — inny przyktad
Przyktad z Wikipedii:

https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means convergence.gif

Iteration #14
0 01 02 03 04 05 06 07 08 09 1

0.1

Jak wida¢ na powyzszym przyktadzie, k-means nie zawsze generuje tak intuicyjnie
poprawne wyniki, jak na wczesniejszych przyktadach. Istnieje szereg okolicznosci
specjalnych, ktére nalezy/warto uwzgledni¢, aby otrzymaé optymalne wyniki.

Uczenie nienadzorowane — algorytm k-means



Przypadek specjalny k-means — centroid ze zbiorem pustym

Co robi¢, gdy w trakcie pracy algorytmu powstanie centroid z pustym zbiorem
punktow?

Metoda 1: pomingc ten centroid w dalszym ciggu.
Jednak jest mozliwe, ze liczba skupien jest narzucona, i chcemy ja utrzymywac.

Wtedy:

Metoda 2: ponownie zainicjalizowaé potozenie tego centroidu, i kontynuowac.

Uczenie nienadzorowane — algorytm k-means



Przypadek specjalny k-means — brak separacji skupien

Nie zawsze zbidr probek ukfada sie w zdecydowanie odseparowane skupienia. Mozemy
chcie¢ mimo wszystko pogrupowac dane.

Np. producent koszulek T-shirt zrobit

badania antropometryczne aby Algorytm nadal dziata poprawnie,
zaprojektowac dobrze dopasowane znajdujac zadang liczbe skupien
koszulki w kilku rozmiarach (np.: S,M,L):  w oparciu o odlegtosci:
T-shirt sizing T-shirt sizing
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Height Height
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Algorytm k-means — inicjalizacja

W najprostszym przypadku inicjalizacja moze by¢ przypadkowa, np. dowolne K probek
zbioru treningowego. Jednak nie zawsze daje to dobre wyniki.

& * - x ™
. o P . - -
. \d . L . - = x & L] 'x L]

W przypadku jak powyzej po lewej mozna uzyskaé pozadane rozwiazanie (powyzej po
prawej). Jednak niefortunna inicjalizacja moze wygenerowaé rozwiazania jak ponizej.

o X
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Algorytm k-means — inicjalizacja (cd.)

Jak zapobiec niefortunnej inicjalizacji, ktora moze prowadzi¢ do wygenerowania
nieoptymalnych skupien, osiggajacych lokalne maksimum funkcji kosztu?

Podobnie jak w metodzie wyzarzania, mozna porzuci¢ wygenerowane centroidy,

i wybra¢ je ponownie losowo. Jednak aby poréwnac miare jakosci (funkcje kosztu, czyli
wazong sume odlegtosci wszystkich punktéw od centroidéw ich skupien), nalezy
doprowadzi¢ algorytm w obu przypadkach do konca.

W praktyce oznacza to wielokrotne (1007, 1000 razy?) powtdrzenie algorytmu k-means
dla losowo wybranych punktéow startowych, i wybraniu globalnie najlepszego
rozwigzania.

Istniejg podejscia do inicjalizacji algorytmu k-means bardziej ,,naukowe™ niz préby
losowe, np. algorytm inicjalizacji o nazwie k-means++, ktéry znaczaco poprawia wynik
nastepujacego po nim zastosowania k-means. K-means++ wykonuje k przebiegow na
zbiorze danych, zatem nie skaluje sie dobrze dla duzych zbioréw. Jego ulepszenie

o nazwie k-means|| daje réwnowazne wyniki i jest znacznie lepiej skalowalny.

1.D.Arthur, S.Vassilvitskii: “K-means++: the advantages of careful seeding”, 2007
2.B.Bahmani, B.Moseley, A.Vattani, R.Kumar, S.Vassilvitskii: “Scalable K-means++"

Uczenie nienadzorowane — algorytm k-means 12



Algorytm k-means — okreslenie liczby skupien

Wymagana przez algorytm liczba skupien K nie zawsze jest z goéry znana, i czasami
trzeba jg okresli¢ eksperymentalnie.

Metoda punktu fokcia (elbow point):

- Elbow Poiqt Example

35
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20
elbow point, K=4

15

10

Average Within-Cluster Distance to Centroid

1 2 3 4 5 6 7
Number of Clusters K
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Metoda punktu tokcia nie zawsze sie sprawdza. Czesto krzywa nie wykazuje
charakterystycznego punktu zatamania, i po prostu asymptotycznie maleje wraz ze
wzrostem liczby skupien.

Niestety, w tym przypadku nie mozemy probowac optymalizacji kryterium jakosci, czyli
wazonej sumy odlegtosci wszystkich punktéw od ich centroidow. Albowiem ta suma
osigga zero dla liczby skupien réwnej liczbie probek K = N.

W takim przypadku mozna odwotac sie do specyfiki problemu, z ktérego pochodza
prébki. Nalezy dokonac subiektywnej oceny, jaka liczba skupien bedzie odpowiednia dla
tej dziedziny problemowe;.

Uczenie nienadzorowane — algorytm k-means 14



Algorytm k-means — problemy specjalne

Algorytm k-means dobrze dziata w wielu przypadkach praktycznych, jednak sa
przypadki, gdzie definitywnie nie radzi sobie. Takimi przypadkami s3g skupienia réznigce
sie wielkoscig, a takze skupienia réznigce sie gestoscig probek w zbiorze treningowym.

????

Uczenie nienadzorowane — algorytm k-means 15



Algorytm k-means — problemy specjalne (2)
|

15

2= =
[ Ok
15 0 1 1 10 5 0 1
X
Problem z wklestymi skupieniami t0p
mozna rozwigzac posrednio,
S5k
zwiekszajac liczbe skupien. 2
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Algorytm k-means — podsumowanie

Algorytm k-means jest prostym i skutecznym algorytmem analizy skupien. Jego
ztozonos¢ obliczeniowa wynosi O(t K N') gdzie K, N s3 odpowiednio liczba skupien
| probek, natomiast ¢ jest liczbg iteracji algorytmu. Zwykle K, ¢ < N.

Jednak posiada kilka istotnych probleméw, ktore utrudniajg, lub uniemozliwiaja jego
zastosowanie:

e wymaga wyznaczenia liczby skupien K,
e wrazliwy na inicjalizacje centroidow, moze zbiegac sie do maksimow nielokalnych,

e ma zastosowanie do danych liczbowych (obliczanie srednich i odlegtosci), problemy
z danymi kategorycznymi,

e problemy ze skupieniami o niewypuktych ksztattach,
e problemy ze skupieniami réznigcymi sie wielkosciami,

e problemy ze skupieniami réznigcymi sie gestosciami.

Uczenie nienadzorowane — algorytm k-means 17



Uczenie nienadzorowane — algorytm k-means
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Algorytm EM — Expectation Maximization

Mozna zastosowac podejscie podobne do algorytmu k-means na gruncie
probabilistycznym. Zakfadajac, ze punkty zbioru treningowego nalezg do K skupien
z pewnym losowym rozktadem prawdopodobienstwa, naturalnie jest przyjaé, ze te
skupienia wynikaja z normalnych rozktadéw prawdopodobienstw, tzw. mieszaniny
rozktadéw normalnych albo gausowskich (mixture of Gaussians). Algorytm EM
(Expectation Maximization) uczy sie parametréw takiej mieszaniny rozktadéw.

| 9 : | = i
0.8 {7 AR 08 - 08 § 77\ AR
0.6 A5 T 0.6 134 0.6 1 '

(@)X &
0.4 R 0.4 1 0.4 -
0.2 1 0.2 - 0.2
N - - T r . 0 r T r - 1 (] r T r - "
0 02 04 06 08 | 0 02 04 06 08 |1 0 02 04 06 08 1

Rysunek po lewej przedstawia mieszanine trzech symulowanych rozktadéw normalnych.
Srodkowy rysunek przedstawia zbiér punktéw wygenerowanych dla tego rozktadu.
Rysunek po prawej przedstawia mieszanine rozktadéw wyuczong przez algorytm EM.

Uczenie nienadzorowane — algorytm EM 19



Algorytm EM — Expectation Maximization (cd.)

Zaktadajac, ze zmienna C' oznacza sktadowa mieszaniny z wartoscia 1, ..., K, rozkfad
prawdopodobienstwa mieszaniny dany jest wzorem:

P(x) = Zﬁl P(C = i)P(x|C = i)

gdzie x jest wektorem atrybutéw probki.

Parametrami rozktadu s3: w; = P(C = i) (waga sktadowej i), 1; (Srednia sktadowe;
i), i ©; (kowariancja sktadowej 7).

|dea algorytmu polega na tym, ze poczatkowo zaktadamy pewne wartosci parametréw
powyzszego rozktadu. W kazdym cyklu algorytmu, dla kazdego punktu obliczane s3
prawdopodobienstwa, ze nalezy on do poszczegdlnych sktadowych. Nastepnie,
przeliczane sg parametry wszystkich sktadowych na podstawie wszystkich punktéw,

z wagami bedacymi prawdopodobienstwami przynaleznosci danego punktu do danej
sktadowej. Te dwa kroki powtarzane s3 az do uzyskania zbieznosci algorytmu,
podobnie jak w metodzie k-means.

Uczenie nienadzorowane — algorytm EM 20



Algorytm EM — Expectation Maximization (cd.)
Algorytm EM:

Inicjalizacja: ustaw wartosci poczatkowe parametréw wszystkich sktadowych

REPEAT {

Krok E: Oblicz prawdopodobienstwa p;; = P(C' = i|x;), ze probka x; nalezy do
sktadowej i. Na mocy reguty Bayesa mamy: p;; = aP(x;|C =1)P(C =1).
Okredlamy n; = ; p;;, czyli efektywng liczbe punktéw aktualnie przypisanych do
sktadowe;j 7.

Krok M: Oblicz nowe srednie, kowariancje, i wagi sktadowych za pomoca
nastepujacych wzordw:

Hi £ %:pijxj/nz'
Li 4 %pij(xj — i) (% — i)/
w; < nZ/N
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Algorytm EM — Expectation Maximization (cd.)

Algorytm EM nie jest wolny od pewnych problemow. Mozliwy jest przypadek, kiedy
jedna ze skfadowych zredukuje sie do pojedynczego punktu, z zerowg wariancja

i prawdopodobienstwem rownym 1. Innym problemem jest natozenie sie dwdch
sktadowych, ktére nastepnie wspdtdzielg ten sam zbior punktow.

Takie zjawiska prowadza do zbiegniecia sie algorytmu w lokalnym maksimum. Jest to
powazny problem, zwfaszcza w wielowymiarowych przestrzeniach. Rozwigzaniem moze
byc¢ reinicjalizacja sktadowej z nowymi parametrami, podobnie jak w przypadku
algorytmu k-means.

Uczenie nienadzorowane — algorytm EM 22



Zwiazek pomiedzy metodami k-means i EM

Algorytmy sa w pewnym sensie podobne, realizujg na przemian dwa kroki: (1)
generowanie skupien, i (2) przenoszenie probek pomiedzy skupieniami.

Jednga istotng rdznica jest, ze w algorytmie k-means punkty przypisywane s3
skupieniom w sposéb kategoryczny, podczas gdy EM przypisuje wszystkim punktom
prawdopodobienstwa przynaleznosci do poszczegdlnych dystrybucji.

Inng réznica jest model gausowski, lezacy u podstaw dziatania algorytmu EM.

Algorytm k-means jest w stanie generowac dystrybucje wynikowe, ktére nie s3 w zaden
sposob podobne do rozktadow gausowskich. Z drugiej strony, wiele zjawisk naturalnych
jest zgodnych z modelem gausowskim, zatem algorytm EM dziata dla nich poprawnie.

Uczenie nienadzorowane — algorytm EM 23
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DBSCAN — analiza skupien oparta na gestosci

DBSCAN to algorytm opracowany w celu pokonania trudnosci algorytmu k-means
W poprawnym rozpoznawaniu skupien o nietypowym ksztattach:

e klasyfikuje wszystkie punkty jako:
centralne (core) pewnego skupienia,
graniczne (border) skupienia, albo
szum (outliers) — czyli takie, ktére nie - o
naleza do zadnego skupienia,

® nie wymaga wczesniejszego okreslenia
liczby skupien,

e moze znalez¢ skupienia o dowolnym
ksztafcie; moze nawet znalez¢ skupienie
catkowicie otoczone przez (ale nie
potaczone z) innymi skupieniami,

e wymaga dwoch parametréw: minPts
okresla minimalng liczbe punktéw
sasiednich, aby zadeklarowac punkt jako
punkt centralny, a eps okresla promien
sgsiedztwa punktu.

Uczenie nienadzorowane — algorytm EM



Algorytm DBSCAN

1. Zidentyfikuj punkty centralne:
Dla kazdego punktu w zbiorze danych policz liczbe punktow w jego sasiedztwie
o promieniu eps; jesli przekracza minPts, oznacz punkt jako centralny.

2. Utwoérz skupienia:
Wyznacz spojne sktadowe grafu eps-sasiedztwa punktow centralnych. Kazda spojna
sktadowa tworzy oddzielne skupienie.

Wszystkie punkty niecentralne w odlegtosci eps od skupienia rowniez naleza do tego
skupienia, ale s3 oznaczone jako graniczne.

Punkty w takich skupieniach s3
potaczone gestosSciowo.

3. Zidentyfikuj szumy:
Po przetworzeniu wszystkich punktow,
kazdy punkt, ktory nie nalezy do
skupienia, jest oznaczany jako szum.

Uczenie nienadzorowane — algorytm EM 26



Hierarchiczna analiza skupien

Analize skupien mozna przeprowadzic¢, budujac hierarchie skupien jednym z dwoch
podstawowych sposobdw:

e od dofu do gory, zaczynajac od kazdej prébki reprezentujacej osobny klaster,
nastepnie faczac je w pary, i dalej budujac wieksze klastry;
takie podejscie jest okreslane jako aglomeracyjne (agglomerative clustering),

e od gory do dotu, zaczynajac od jednego klastra reprezentujacego wszystkie probki,
nastepnie dzielagc wieksze klastry na mniejsze;
podejécie nazywane metoda deglomeracyjng (divisive clustering).

Decyzje o tym, ktére klastry powinny zostaC potaczone, lub ktére podzielone,
i doktadnie jak, zwykle s3 oparte na pomiarach odlegtosci miedzy prébkami
oraz klastrami.

W pewnym sensie jest to podobne do algorytmu k-means, ale jest rowniez odmienne
przez konieczno$¢ mierzenia odlegtosci miedzy klastrami.

Uczenie nienadzorowane — hierarchiczna analiza skupien 27



Aglomeracyjna analiza skupien — przyktad

Bardziej powszechne s3 metody aglomeracyjne. Przyktad:

® V.ﬁgf/

#

g 8o |~
(abeded

Powstate drzewo mozna odcigé na pewnej wysokosci, aby uzyskaé pozadang liczbe
klastréw.

Uczenie nienadzorowane — hierarchiczna analiza skupien
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Metryki odlegtosci miedzy klastrami
Stosuje sie szereg metod pomiaru odlegtosci miedzy klastrami:
e MIN — ma tendencje do tworzenia dtugich rozproszonych klastréow
e MAX — ma tendencje do tworzenia bardziej kompaktowych klastréw

e usrednianie grupowe — uwzglednia Srednig odlegtos¢ miedzy kazdym punktem
w jednym klastrze do kazdego punktu w drugim

e odlegfos¢ pomiedzy centroidami —

e metoda Warda — podobna do usredniania grupowego, ale sumuje kwadraty
odlegtosci, w praktyce minimalizujac catkowita wariancje wewnatrz klastra

Uczenie nienadzorowane — hierarchiczna analiza skupien
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Redukcja wymiaru

Istnieje szereg metod redukcji wymiaru pozwalajacych przeksztatci¢ reprezentacje
danych do innej przestrzeni, o mniejszym wymiarze. Jedna z przestanek motywujacych
takie przeksztatcenie jest klgtwa wymiarowosci, bedaca jednym z gtownych
problemow uczenia maszynowego.

Mowigc obrazowo, wiele algorytmow uczenia maszynowego, ktére dobrze sprawuja sie
dla danych w niskowymiarowych przestrzeniach, przestaja dziata¢ zadowalajaco gdy
wymiar przestrzeni jest duzy.

Z innego punktu widzenia, dane sg typowo reprezentowane przez szereg parametrow,

z ktérych niektore moga nie mieé istotnego wptywu na zdolnos¢ klasyfikacji lub
grupowania tych danych. Takie nadmiarowe parametry nie tylko nie pomagaja

w automatycznym wykrywaniu wzorcow istniejagcych w danych, ale istotnie w nim
przeszkadzaj3, poniewaz wprowadzajg pozorne zaleznosci skutecznie utrudniajgce prace
algorytmow.

Zatem opfaca sig, przed przystapieniem do eksperymentu maszynowego uczenia,
wykonac analize i redukcje wymiarowosci. Jedng z niezwykle skutecznych jej metod
jest algorytm analizy sktadowych gtéwnych PCA (Principal Component Analysis).
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Analiza sktadowych gtéwnych (PCA) — przyktfad

Rozwazmy pewien zbior punktow:

Przesuwamy jego srodek geometryczny do poczatku ukfadu wspoétrzednych:

Uczenie nienadzorowane — analiza sktadowych gtéwnych (PCA)
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Obliczamy macierz kowariancji dla przedstawionego zbioru punktéw:

oy oory ) =1 3)

Ta macierz kowariancji generuje pewne przeksztatcenie liniowe:

(x,y) — (92 + 4y, 4z + 3y)

To przeksztatcenie przenosi oryginalne punkty do uktadu wspotrzednych, ktérego
osiami sg wektory wtasne macierzy kowariancji, a rozciagniecie liniowe generuja
wartosci wtasne:

Wektory wtasne

Wartosci wtasne 11 1

Uczenie nienadzorowane — analiza sktadowych gtéwnych (PCA)
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Oryginalne punkty s3 doktadnie reprezentowane w nowym uktadzie wspotrzednych,
ktorego osie nazywane s3 sktadowymi gtownymi. Jednak dla celdw redukgji
wymiaru dazymy do wyboru tylko jednej wspotrzednej. Musi nig by¢ sktadowa gtéwna
o najwiekszej wartosci wiasne;j.

'y

Redukcja wymiaru oznacza reprezentacje

punktow przez ich zrzutowanie do

przestrzeni o nizszej wymiarowosci, czyli

w tym wypadku na wybrang o$ | N
wspdtrzednych.

Jest to zatem reprezentacja przyblizona.
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Algorytm PCA

Algorytm PCA znajduje M-wymiarowe przyblizenie zbioru danych {x" :n =1,.... N}
o wymiarze oryginalnym dim(x") = D (M < D):

1. Wyznacz wektor $rednich m zbioru prébek o rozmiarze D x 1 i macierz kowariang;ji
S o rozmiarze D X D:

N 1 N
m=—>x", S=—— x" —m)(x" —m)’.
N nzz:l ’ N —1 ngl( )( )
2. Wyznacz wektory wiasne e!, ..., e” macierzy kowariancji S posortowane wedtug

malejacych wartoéci wtasnych wektoréw wtasnych. Utwérz macierz E = [e!, ...e].

3. Niskowymiarowa reprezentacja y", oraz przyblizona rekonstrukcja x”" kazde;
z probek n s3 dane przez:
yn _ ET(xn . m)) X"~ Xm —m+ Eyn

4. Catkowity btad kwadratowy przyblizenia dla zbioru treningowego wynosi:
N D
S(xP=X")P=(N=1) ¥ )
S —x"E= (V=1 3
gdzie A\ysi1, ..., ANy S3 pominietymi wartoSciami wtasnymi.
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Uwaga: algorytm PCA jest wrazliwy na wielko$¢ wartosci parametrow. Jesli jeden

z parametréw bedzie przyjmowat wartosci znacznie wigksze niz inny, to ten pierwszy
parametr zostanie wybrany jako najwieksza gtéwna sktadowa, a drugi jako kolejna.
[ tej przyczyny przed wykonaniem algorytmu PCA wymagane jest uniwersalne

skalowanie wszystkich parametréw.

Uczenie nienadzorowane — analiza sktadowych gtéwnych (PCA)
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Analiza koszyka rynkowego

Istnieje szereg metod drazenia danych/uczenia maszynowego dotyczacych zakupdw.
Zwroc¢my uwage na dwa rodzaje rekomendacji wyswietlanych przez portale
sprzedazowe takie jak Amazon:

e (Czesto kupowane razem: ...

e Klienci, ktorzy kupili ten produkt kupili réwniez ...

Pierwsza grupa metod jest okreslana jako analiza koszyka rynkowego (Market
Basket Analysis). Metody MBA koncentruja sie na odkrywaniu reguf
asocjacyjnych (association rule mining) charakteryzujacych typowo wykonywane
zakupy, czyli znajdowaniu zwigzkdw pomiedzy réznymi artykutami kupowanymi

w roznych transakcjach. Takie zwigzki reprezentowane sg na przyktad w postaci regut
JEZELI-TO. Jednym z najbardziej znanych algorytméw tej grupy jest Apriori.

Nieco inne podejscie do drazenia danych historii transakcji zakupowych wyrazaja
systemy rekomendacji (Recommender Systems). Zmierzaja one do okreslania
preferencji indywidualnych konsumentéw. Najbardziej znane algorytmy naleza do grupy
filtrowania kolaboracyjnego (collaborative filtering), i beda omdwione pdznie;.
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Analiza koszyka rynkowego — model

Rozwazamy historie transakcji zakupowych jako zbiér transakeji T' = {t1,to, ..., t, },
gdzie pojedyncza transakcja jest podzbiorem ¢ C [ zbioru wszystkich dostepnych
elementéw I = {i;, 99, ..., 0}

Przykfad:

Transactionl | @ @ %
Transaction2 | @ v
Transaction3 | @ %
Transaction4 | @ U
Transaction 5 WY N
Transaction 6 R~
Transaction 7 ' W
Transaction 8 g

Uczenie nienadzorowane — analiza koszyka rynkowego
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Analiza koszyka rynkowego — reguty asocjacyjne

Chcemy odkrywac zwigzki pomiedzy elementami transakcji zakupowych w postaci
reguf asocjacyjnych postaci, przyjmujac, ze A i B s3 roztacznymi (AN B = ()
zbiorami elementéw zakupowych (A, B C I):

A= B

Takich zwigzkdw istnieje zapewne wiele w cafej historii kupowania, lecz jedne moga
by¢ silniejsze niz inne. Wprowadzamy nastepujace miary wiarygodnosci reguty A = B
na podstawie zbioru transakcji 7.

Wsparciem (Support) reguty A = B w zbiorze transakcji T' nazywamy czestotliwosé
transakcji, ktére zawierajg wszystkie elementy z A i B:

Support(A = B) = P(AU B)
Support(X) = P(X)

Zaufaniem (Confidence) reguty A = B w zbiorze transakgcji T nazywamy
czestotliwosc takich transakcji zawierajacych B, ktére réwniez zawierajg A:

Confidence(A = B) = P(BJ|A)

Inaczej mowiac, zaufanie reguty mowi jak czesto byta ona prawdziwa w zbiorze
transakcji.
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Dodatkowo definiujemy Przyrost (Lift) jako utamek:

P(AUB)
P(A) - P(B)

Lift(A = B) =

Przyrost wskazuje ogdlne znaczenie reguty w nastepujacym sensie:

Lift(A = B) > 1 oznacza, ze A, B s3 dodatnio skorelowane
Lift(A = B) < 1 oznacza, ze A, B s3 ujemnie skorelowane

Liftf(A = B) =1 oznacza, ze A, B s3 niezalezne

Uczenie nienadzorowane — analiza koszyka rynkowego
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Analiza koszyka rynkowego — zbiory czeste

Poszukiwanie regut asocjacyjnych wymaga zdefiniowania minimalnego progu wsparcia
oraz minimalnego progu zaufania. Wyznaczenie wszystkich regut asocjacyjnych moze
by¢ zrealizowane nastepujaco:

e /najdz wszystkie zbiory czeste kupowanych elementow.

Zbior elementow jest czesty jesli przekracza zadany prég wsparcia minsupport.

e W obrebie kazdego zbioru czestego wyznacz wtasciwe reguty asocjacyjne.

Reguta asocjacyjna jest musi przekracza¢ minimalny prég zaufania minconf aby
zosta¢ wybrana.

Znajdowanie zbiorow czestych wymaga sprawdzania wszystkich podzbioréw zbioru
elementéw I, ktérych jest 2!/l — 1 (z pominieciem podzbioru pustego). Zwykty petny
przeglad tych podzbioréw bytby zbyt nieefektywny.
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Algorytm Apriori — generowanie zbiorow czestych

Whtasnosc apriori: wszystkie podzbiory zbioru czestego sg rowniez zbiorami czestymi.
| na odwrot: nadzbior zbioru, ktory nie jest czesty, réwniez nie moze byC czesty.

Te wtasno$¢ mozna wykorzystac dla efektywnej generacji zbiorow czestych wedtug idei:
znajdz wszystkie czeste zbiory jednoelementowe, nastepnie na ich bazie wygeneruj
wszystkie zbiory dwuelementowe i odfiltruj z nich tylko zbiory czeste, nastepnie tak
samo utworz trzyelementowe zbiory czeste, itd.

Algorytm:

1. Utwoérz kolekcje jednoelementowych zbiorow czestych Fi.
2. Dla k=2..|I| dopéki F}_1 # () wykonuj:

(a) na podstawie Fj_; utworz kolekcje C), takich k-elementowych kandydatéw ¢ na
zbiory czeste, ktére sg potaczeniem dwéch (k — 1)-elementowych zbioréw
czestych fi_ i fi_; o (k — 2) elementach wspdlnych

(b) kazdy (k — 1)-elementowy podzbiér ¢ musi by¢ zbiorem czestym w Fj,_4

(c) utwérz kolekcje k-elementowych zbioréw czestych Fj. odfiltrowujac z Cj. zbiory
nieczeste.

Warunek (b) powoduje wczesne filtrowanie zbioréw nieczestych na podstawie wtasnosci
apriori.
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Algorytm Apriori — generowanie regut asocjacyjnych

Algorytm generowania regut:

1. Dla kazdego zbioru czestego X

(a) Dla kazdego wtasciwego i niepustego podzbioru A zbioru X:
niech B= X\ A
A = B bedzie reguta asocjacyjna jesli: Confidence(A = B) > minconf

Uczenie nienadzorowane — analiza koszyka rynkowego: algorytm Apriori
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Algorytm Apriori — przyktad

Rozwazmy baze danych transakcji zakupowych:

T1 111314
12 121315
T3 11121315
T4 12 15

Do wykonania algorytmu Apriori przyjmiemy parametry minsupport=0.5;
minconf=0.75.

Pierwsza iteracja:

D Elementy I 2bidr Support
T1 1113 I4 L 2 s (1} 05
T2 RBI5E = 1 U2 3AS0TS e o7
T3 11121315 L) Syl (13} 0.75
T4 1215 by djn=s {I5} 0.75
{15} 3/4—0.75 '
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Druga iteracja:

1D Elementy {1112} 1/4=0.25

TL 1113 14 {1113} 2/4—05 (IL13} 2/4=05
T2 21315 = €2 {ILIBY 1/4=025 = F2: {1213} 2/4—05
T3 11121315 (12,13} 2/4=05 {12,I5) 3/4=0.75
T4 1215 (12,15} 3/4=0.75 (13,5} 2/4=05
{13,]5) 2/4=05

Trzecia iteracja:
ID Elementy
TL 1113 14

{IL12,13} 1/4=0.25 |
% |1|2|2|3|3|5|5 = O3 s5) 1/4=025 T3 {12,135} 2/4—0.5
LG {12,13,15Y 2/4—=0.5

Nalezy zauwazyé, ze zbiory {11,12,13} i {I1,13,15} nawet przed obliczeniem ich wsparcia
zostaty odrzucone przez algorytm Apriori, poniewaz zawierajg podzbiory nie nalezace
do F5 (krok 2b algorytmu).

Algorytm zatrzymat sie na czwartej iteracji, poniewaz zbior C jest pusty. Do generac;i
regut przechodza zbiory czeste z F5 i F3 poniewaz jednoelementowe zbiory z F nie
generuja zadnych reguft.
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Generacja regut:

D zbier  reguta  Confidence
RL  {IL,13} {11} = {13}  2/2=1.0
R2  {I1,13} {13} = {11}  2/3=0.66
R3 {1213} {12} = {138}  2/3=0.66
R& {1213} {13} = {12}  2/3=0.66
D Elementy RS {1255} {12} = {15}  3/3=10
TL 111314 R6 {125} {15} = {12}  3/3=1.0
T2 121315 = R7 {35 {13} = {I5}  2/3=0.66
T3 11121315 R8 {135} {15} = {13}  2/3=0.66
T4 1215 RO {12135} {1213} = {5}  2/2=1.0
R10 {12135} {125} = {13}  2/3=0.66
R11 {12,135} {135} = {12}  2/2=1.0
R12 {12135} {12} = {135} 2/3=0.66
R13 {12135} {13} = {I2I5} 2/3=0.66
R14 {12135} {15} = {1213} 2/3=0.66

Ostatecznie dla zadanych parametrow algorytm Apriori wygenerowat pieC regut
asocjacyjnych.
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Systemy rekomendacji

Przyjrzymy sie teraz innemu podejSciu zwigzanemu z analizg danych zakupowych,
dotyczacemu systemédw rekomendacji. Chcac zarekomendowac jakis towar pewnemu
konsumentowi chcemy przewidzie¢ jego mozliwg ocene tego towaru. Dla tej procedury
wyznaczania mozliwej oceny konsumenta jest czesto uzywane okreslenie filtrowania,
ktore w statystyce jest stosowane w odniesieniu do aproksymowania wielkosci
biezacych (a nie przysztych albo przesztych).

Aby wyznaczy¢ spodziewang ocene towaru A przez konsumenta X mozemy zastosowac:

filtrowanie kolaboracyjne, oparte na podobienstwie konsumentéow
(collaborative filtering)
jesli konsument X jest podobny do Y, i Y kupit A; pole¢ A konsumentowi X

filtrowanie oparte na podobienstwie tresci (content-based filtering)
jesli konsument X kupit A, i A jest podobne do B; pole¢ B konsumentowi X

S3 rowniez mozliwe podejscia hybrydowe w rézny sposéb taczace oba powyzsze.

Systemy rekomendacji ucza sie wyznaczania konkretnych wartosci na podstawie
zapamietanych danych, a wiec formalnie nalezg do metod uczenia nadzorowanego.
Omawiamy je w grupie algorytméw poswieconej uczeniu nienadzorowanemu ze
wzgledu na podobienstwo zastosowan.
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Filtrowanie kolaboracyjne i oparte na podobienstwie tresci

Zasadniczo zadanie wyznaczenia nieznanego parametru A probki X gdy parametr ten
jest znany w serii uczacej, jest typowym zadaniem klasyfikacji (gdy wartosci parametru
A maja charakter dyskretny) lub regresji (gdy te wartosci wybierane s3 z ciggtego
zakresu liczbowego). Zatem mozna do nich stosowaé wczesniej poznane algorytmy. To
podejscie do zagadnienia rekomendacji okreslane jest jako model based.

Mozliwe jest jednak jeszcze inne podejscie, polegajace na wyborze z posiadanego
zbioru danych probek dotyczacych konsumentow ,,podobnych™ w jakims sensie do
konsumenta X, i oparcie rekomendacji na parametrach tylko tych konsumentéw. (Albo,
w przypadku filtrowania opartego na podobienstwie tresci, na wyborze tylko towaréw
,podobnych” do przedmiotowego A.) To podejscie okreslane jest jako memory-based

| zostanie tu pokrotce przedstawione.

Jedng z zalet tego ostatniego podejscia jest, ze otrzymany wynik jest tatwo
przedstawi¢ w kontekscie i uzasadnic.
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Filtrowanie kolaboracyjne — obliczanie podobienstwa
konsumentow

Zaktadajac, ze dostepne dane zawierajg oceny wielu towaréw wyznaczone przez
konsumentéw, mozemy obliczac ,,podobienstwo” konsumentow X i Y na podstawie ich
ocen 7y 1,722, ..., Ty.1,Ty2... PEWNEj grupy towaréw [, ocenionych przez obu
konsumentéw, korzystajac z jednego z ponizszych modeli podobienstwa.

Model podobienstwa Pearsona:

2 (rei — fx)(ry,i - Ty)
1€y

> (Tx,i _ fx)QJ ) (Ty,i - T_y)Q

simil(x,y) = J

Podobienstwo obliczone jako cosinus kata miedzy wektorami atrybutéw:

- = Z Tx,iTy,
simil(x, y) = cos(Z,y) = Ly _ 1€ Ly
) ) 5 = 5 5
2] > [[]] > 2y 2
iE[xy ot ZE[xy Yt
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Filtrowanie kolaboracyjne — wyznaczanie oceny konsumenta

Majac podobienstwa konsumentéw obliczone ze wzgledu na oceniane towary, mozemy
wybraé pewien zbiér U N konsumentéw najbardziej zblizonych do danego konsumenta
u, | wyznaczy¢ jego ocene towaru 7 jako:

1
— X Ty lub:
N weu

. /
/ZU simil(w, ' )ry
we lub:

> [simil(u, u)|
u'elU

u’XE:U simil (u, u’)(?“u/,z' — T)
Ty +

> [simil(u, u)]
u'elU

Pierwsza wersja jest zwykta srednig ocen ,,podobnych” konsumentéw, druga jest
srednig ocen wazong wzajemnym podobienstwem konsumentdw, a trzecia dodatkowo
uniezaleznia sie od bezwzglednej wartosci ocen poszczegdlnych konsumentéw,
uwzgledniajac tylko réznice od ich Srednich ocen, i przenoszac uzyskang wzgledna
zwyzke lub znizke oceny towaru ¢ na Srednig ocene konsumenta w.
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Filtrowanie oparte na podobienstwie tresci

W przypadku filtrowania opartego na podobienstwie tresci postugujemy sie tymi
samymi danymi ocen wielu towaréw przez wielu konsumentéw, ale tym razem
obliczamy macierz podobienstw towardw, stosujac te same wzory podobienstwa.

Nastepnie wyznaczamy zbiér N towaréw najbardziej podobnych do towaru, ktérego
ocene dla konsumenta u chcemy wyznaczyc, i okreslamy ocene jedng z metod
usSredniania podobnie jak w przypadku usredniania ocen konsumentéw.
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Faktoryzacja macierzy ocen

Catkowicie odmiennym podejsciem do filtrowania kolaboracyjnego jest idea faktoryzacji
oryginalnej macierzy ocen R € RUSErSxIt€MS 5 dwie macierze, z ktérych pierwsza H
ma rzedy odpowiadajgce wszystkim konsumentom, a druga I ma kolumny
odpowiadajace wszystkim towarom. Kolumny pierwszej i rzedy drugiej macierzy sa
zwigzane z nowo utworzonymi zmiennymi ukrytymi (/atent factors) w taki sposéb,
ze iloczyn wektorowy macierzy H i VW mozliwie wiernie przybliza macierz ocen,

| zatem uzupetnia oceny, ktorych brakuje i ktore nalezy wyznaczyc:

~

R=HxW

gdzie:

R € RUsersxitems  jast macierza predykcji ocen,

H e Rusersxlatent factors  jact macierza zmiennych ukrytych dla danego uzytkownika,
W e Rlatent factorsxitems oot macierza zmiennych ukrytych towaréw

(transponowang).

Ta idea faktoryzacji macierzy (matrix factorization) ma na celu wyfonienie pewnej
liczby zmiennych stanu (zmiennych ukrytych) pozwalajacych wyrazaé oceny za pomoca
macierzy o mniejszej wymiarowosci. Stanowi to pewien odpowiednik metody analizy
sktadowych gtéwnych (Pricipal Component Analysis, PCA).
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Metody faktoryzacji macierzy ocen

Zmienne ukryte wyznacza sie zwykle metodami uczenia maszynowego, na przyktad
sieciami neuronowymi. Zaproponowanych zostat szereg metod faktoryzacji macierzy
ocen. Pierwsza wersja faktoryzacji macierzy ocen, zwana Funk MF powstata

w odpowiedzi na konkurs Netflixa. W tej wersji predykcja r,; oceny uzytkownika

1 towaru 1 jest obliczana wedtug wzoru:

n factors

=" 8 Hlu, WIS,
Sita ekspresji przestrzeni zmiennych ukrytych jest zwigzana z jej wymiarem. Dla jednej
zmiennej ukrytej ta reprezentacja sprowadza sie do wyboru najczescie;
rekomendowanego towaru, niezaleznie od konsumenta. Zwiekszanie liczby zmiennych
pozwala na wprowadzenie personalizacji, i jakos¢ rekomendacji wynikajacych z wartosci
ocen sie zwieksza, a powyzej pewnej liczby zmiennych zaczyna mie¢ tendencje do
przeuczenia. Dla unikniecia przeuczenia stosowana jest regularyzacja polegajaca na
dodaniu sktadnika regularyzacyjnego do funkcji oceny.

Metoda Funk MF minimalizuje funkcje oceny:
argming || R — R||r + ol [ H|| + 5|[W]]

gdzie ||.||r jest norma Frobeniusa bedaca pewnym uogélnieniem normy Euklidesowe;.
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Uczenie sie bayesowskich sieci przekonan

Przypomnijmy sobie sieci bayesowskie i ¢wiczenie z budowa sieci dla danego zbioru
danych. WidzieliSmy, ze niektdére programy do budowy i obliczen na takich sieciach
miaty funkcje automatycznej budowy sieci. Jak mégtby dziataé taki algorytm?

Przypomnijmy sobie podstawowe zasady budowy sieci bayesowskich:

e sie¢ bayesowska jest acyklicznym grafem skierowanym (DAG — Directed Acyclic
Graph), lub zbiorem acyklicznych graféw skierowanych, tzn. dopuszczamy
rozdzielenie zbioru zmiennych losowych na podzbiory (partycje), ktére s3 od siebie
catkowicie niezalezne,

e zmienne losowe, ktore sg niezalezne, nie s3 bezposrednio potaczone,

e zmienne losowe, z ktérych jedna zalezy bezposrednio od drugiej, potaczone s3
tukiem skierowanym, wskazujgcym zaleznosc,

e ogolnie korzystne s3 sieci o matej liczbie fukéw — zwtaszcza matej liczbie rodzicow
kazdego wezta — poniewaz wielu rodzicow oznacza rozbudowane rozktady
prawdopodobienstw warunkowych, ktore sg ztozone obliczeniowo, i dla ktérych
estymacji potrzeba wielkich ilosci danych.
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Rozwazymy to zagadnienie po kolei na dwdch poziomach.

Najpierw zatozymy, ze struktura sieci jest znana, natomiast zbior danych uczacych jest
niekompletny, i brak wartosci pewnych zmiennych. Chcemy nauczyc sie kompletnych
parametréw sieci, tzn. wszystkich rozktadéw prawdopodobienstw warunkowych.

Z kolei, zatozymy, ze dane uczace sa kompletne, ale struktura sieci nie jest znana,
i chcemy wygenerowac najbardziej poprawng strukture sieci dla danego zbioru danych.
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Wyznaczanie parametrow sieci przekonan

Zaktadamy, ze znana jest struktura sieci, i zbidr danych uczacych, w ktorych jednak
brakuje pewnych wartosci. Zauwazmy, ze sie¢ bayesowska stuzy do okreslania
najbardziej prawdopodobnych wartosci pewnych parametréw, gdy dane s3 (dowolne)
inne parametry. Mozemy to wykorzysta¢ do uzupetnienia brakujacych parametrow.

Zastosujemy pewng wersje algorytmu EM (Expectation Maximization), ktéry dziata
przez powtarzanie nastepujacych dwéch krokdéw, do osiggniecia zbieznosci:

Inicjalizacja: oblicz wstepne wartosci parametrow sieci, ignorujac brakujace dane.

Krok E (Expectation): dla kazdej probki danych oblicz warto$ci oczekiwane
parametrow, ktorych wartosci brakuje.

Krok M (Maximization): oblicz nowe parametry sieci (warunkowe rozktady
prawdopodobienstw wszystkich zmiennych).

Algorytm EM jest dos¢ ogolnym schematem, znajdujgcym zastosowanie do szeregu
roznych probleméw. Dziata obliczajac na przemian: lepsze przyblizenie poszukiwanych
wartoéci (krok E), i lepszy, zoptymalizowany model (krok M).

Pytanie: jaka jest wada tego podejscia?

Odpowiedz: jest to algorytm gradientowy, podatny na zbiegniecie sie do lokalnego,
zamiast globalnego, maksimum funkcji oceny.
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Wyznaczanie parametrow sieci przekonan — maksima lokalne

Algorytm EM wykonuje przeszukiwanie gradientowe, i zbiega sie do lokalnego
maksimum funkgji jakosci. W ogdlnym przypadku mozemy nigdy nie mie¢ pewnosci, ze
znalezione maksimum jest globalne. To jednak moze nie by¢ do konca zta wiadomos¢.

Krzywa kryterium jakoSci parametréw sieci moze mie¢ wiele lokalnym maksiméw, ale w
sumie niekoniecznie jest istotne, aby jako rozwigzanie znalez¢ jego globalne maksimum.

W uczeniu maszynowym celem nie jest maksymalne dopasowanie modelu do zbioru
uczacego, lecz uogolnianie. Nie ma wcale pewnosci, ze globalne maksimum bedzie

oferowac najlepsze uogdlnianie. Dlatego jako wynik wyznaczania parametrow sieci

bayesowskiej algorytmem EM mozna przyjac dowolne optimum lokalne, jesli mamy
przekonanie, ze nie jest ono duzo gorsze od globalnego.
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Wyznaczanie parametrow sieci bayesowskiej — przyktad

Inicjalizacja:

P(A) = 0.75

Krok E:
P(A, B,—-C) =

P(A,~C)

Krok M:
P(A)=0.75

Krok E:

P(?=1)=0

Probki: 0 1

1 0

1 1

1 ?

P(B|A)=05 P(C|B)=1.0

P(B|-A)=1.0 P(C|-B)=0.0
P(?=1) = P(B|A,=C) = ") =

P(A)x P(B|A) x P(=C|A, B) = P(A)

= P(A,B,-C)+ P(A,-~B,~C) =

P(B|A) =033 P(C|B) = 1.0
P(B|-A)=1.0 P(C|-B) = 0.0

(algorytm zbiegt sie)

O O

=0
x P(B(|A) x P(-C|B)

= 0.75% 0.5 % 0.0
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Uczenie sie struktury

Generowanie struktury sieci jest zadaniem trudnym obliczeniowo. Dla D zmiennych
istnieje eksponencjalnie wiele struktur grafowych taczacych odpowiednie wezty.
Skuteczny algorytm poszukiwania optymalnej struktury grafu musi stosowaé heurystyki
i/lub dodatkowe zatozenia ograniczajace.

Istnieje szereg takich algorytméw. Przeanalizujemy tu dwa z nich:

e algorytm PC tworzacy szkielet grafu nieskierowanego, poczawszy od grafu w petni
potaczonego, przez usuwanie krawedzi taczacych zmienne, ktore moga byé uznane
za niezalezne, albo s3 zalezne, ale s3 warunkowo niezalezne pod warunkiem trzecie;
zmiennej, z ktorg obie s3 potaczone,

e algorytm okreslajacy kierunki tukow grafu na podstawie informacji o ich warunkowe;j
niezaleznosci.
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Algorytm PC generowania szkieletu grafu




Algorytm PC:

utwérz w petni potaczony nieskierowany graf G zbioru wierzchotkéw V'
1=0

repeat

forx eV
do
for y € Neighbors(z)
do
sprawdz, czy istnieje podzbiér S o licznosci ¢ sasiadéw = (poza y),
dla ktérych x 1l y | S
jesli istnieje taki zbior S to usun krawedz v — y z grafu G i Sy = S
done

done
1 =1+ 1

until wszystkie wezty maja co najwyzej 7 sgsiadéw potaczonych

Zauwazmy, ze algorytm buduje zbiory \S;, dla wszystkich par weztéw z,y ktére nie
maja potaczenia w grafie. Zbiory te stanowig ,uzasadnienie” usuniecia danej krawedzi
z grafu, i beda stuzy¢ do prawidtowego skierowania pewnych fukéw na Sciezce
pomiedzy T i .
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Zasady eksperymentalnego okreslania warunkowej
niezaleznosci

Algorytm PC wymaga odpowiedzenia na pytanie, czy dwie zmienne x, y s3 od siebie
niezalezne pod warunkiem trzeciej zmiennej z. W praktyce wymaga to przyjecia
pewnego progu decyzyjnego, poniewaz dla matych zbiorow danych, dwie zmienne
zawsze okazujg sie w pewnym stopniu — by¢ moze niewielkim — od siebie zalezne.
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Zasady okreSlania kierunku tukéw grafu

Okreslanie skierowania tukow grafu nie jest dobrze okreslonym algorytmem. Tylko

w niektorych przypadkach mozna stwierdzi¢ co$ z pewnoscig. Takim przypadkiem jest
sytuacja, gdy dwie zmienne x, y niezalezne (bezwarunkowo), s3 potaczone poprzez
trzecia zmienng z. W tej sytuacji zmienna z jest nazywana zderzaczem (collider).

W przypadku, gdy w tej samej konfiguracji, zmienne z, y s3 niezalezne warunkowo pod
warunkiem z, dopuszczalne sg wszystkie trzy pozostate konfiguracje skierowan.
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Okreslanie kierunku tukéw grafu

Algorytm okreslania skierowania fukéw

1. Sprawdz nieskierowane tuki z — 2z — y; jedli z € S, to ustaw z — 2z <y
2. repeat

przeksztat¢ wszystkie x -z —ynax — z — vy
dla wszystkich x — 4, jesli nie istnieje skierowana Sciezka od x do y, ustaw x — y
jesli dla x — 2z — y istnieje w takie, ze + — w,y — w, 2z — w, ustaw z — w

until nie da sie juz ustawic¢ wiecej skierowan

3. pozostate fuki moga byc skierowane dowolnie, pod warunkiem, ze graf nadal nie ma
cykli skierowanych, i nie zostang wprowadzone dodatkowe collidery
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Materiaty

W tej prezentacji wykorzystane zostaty materiaty z nastepujacych opracowan:
1. Andrew Ng: Unsupervised learning, Coursera video lecture

2. Stuart J. Russell, Peter Norvig: Artificial Intelligence A Modern Approach (Third
Edition), Prentice-Hall, 2010

3. Kevin P. Murphy: Machine Learning A Probabilistic Perspective, MIT Press, 2012

4. Pedro Domingos: Data Mining, Machine learning, cykl wyktadow wideo dostepnych
przez Youtube, Paul G. Allen School of Computer Science & Engineering, University of
Washington, 2016

5. Wikipedia: Collaborative filtering
https://en.wikipedia.org/wiki/Collaborative filtering

6. Wikipedia: Matrix factorization (recommender systems)
https:
//en.wikipedia.org/wiki/Matrix factorization_ (recommender systems)

7. David Barber: Bayesian Reasoning and Machine Learning, Cambridge University
Press, 2012
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