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Algorytm k-means

Bardzo prostą, popularną i skuteczną metodą analizy skupień jest algorytm k-means.
Oparty jest na porównywaniu odległości i wyznaczaniu skupień reprezentowanych przez
ich środki geometryczne — centroidy, minimalizujących pewną funkcję jakości.

Algorytm zakłada, że liczba skupień K, które należy wygenerować jest znana. Algorytm
wykonuje powtarzalnie dwa kroki: krok etykietowania i krok przesunięcia centroidów.

Algorytm k-means:

Krok 0 (inicjalizacja): ustaw wartości początkowe wszystkich K centroidów

REPEAT {

Krok 1 (etykietowanie): oznacz wszystkie próbki etykietą najbliższego centroidu

Krok 2 (przesunięcie centroidów): przesuń wszystkie centroidy do
geometrycznego środka ich skupień

}
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Krok 0 (inicjalizacja) Krok 1 (etykietowanie)

Krok 2 (przesunięcie centroidów) Krok 1 (etykietowanie)
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Krok 1 (etykietowanie) Krok 2 (przesunięcie centroidów)

Krok 1 (etykietowanie) Krok 2 (przesunięcie centroidów)
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Algorytm k-means — kryterium jakości

Algorytm k-means usiłuje znaleźć minimum pewnej funkcji kosztu, która jest miarą
jakości wygenerowanego zbioru skupień. Ta funkcja kosztu jest ważoną sumą odległości
wszystkich punktów od centroidów ich skupień.

Można zauważyć, że pierwszy krok algorytmu (etykietowanie) dokonuje optymalizacji
tej funkcji kosztu ze względu na składowe odległości, przy zachowaniu aktualnych
centroidów.

Drugi krok algorytmu (przesunięcie centroidów) dokonuje optymalizacji tej samej
funkcji ze względu na położenie centroidów, przy zachowaniu aktualnych zbiorów
punktów wszystkich skupień.
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Algorytm k-means — pomiar odległości

Można stosować różne miary do obliczania odległości w algorytmie k-means:

euklidesowa
√

∑

i(ai − bi)2

Manhattan ∑

i |ai − bi|

max maxi |ai − bi|

Ogólnie: ze względu na możliwą rozbieżność wielkości, podobnie jak w przypadku
innych metod opartych na obliczaniu odległości, poszczególne współrzędne należy
skalować do obliczania odległości w przestrzeni cech. Współczynnikiem skalowania
może być wariancja wartości danej współrzędnej na zbiorze treningowym.

Specjalnym problemem są dane nienumeryczne. W niektórych przypadkach, jak np.
napisy tekstowe, istnieje szereg metryk dla nich dedykowanych Przykładami prostych
metryk odległości stringów są: odległość Hamminga i odległość Levenshteina.

Odległość Hamminga (tylko dla stringów równej długości) = liczba pozycji znakowych,
na których stringi się różnią. Jest ona równa minimalnej liczbie podmian pojedynczych
znaków potrzebnej do przekształcenia jednego stringa w drugi.

Odległość Levenshteina (dla dowolnych stringów) = minimalna liczba podmian,
wstawień, oraz usunięć pojedynczych znaków potrzebna do przekształcenia jednego
stringa w drugi.
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Algorytm k-means — inny przykład

Przykład z Wikipedii:
https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif

Jak widać na powyższym przykładzie, k-means nie zawsze generuje tak intuicyjnie
poprawne wyniki, jak na wcześniejszych przykładach. Istnieje szereg okoliczności
specjalnych, które należy/warto uwzględnić, aby otrzymać optymalne wyniki.
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Przypadek specjalny k-means — centroid ze zbiorem pustym

Co robić, gdy w trakcie pracy algorytmu powstanie centroid z pustym zbiorem
punktów?

Metoda 1: pominąć ten centroid w dalszym ciągu.

Jednak jest możliwe, że liczba skupień jest narzucona, i chcemy ją utrzymywać.
Wtedy:

Metoda 2: ponownie zainicjalizować położenie tego centroidu, i kontynuować.
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Przypadek specjalny k-means — brak separacji skupień

Nie zawsze zbiór próbek układa się w zdecydowanie odseparowane skupienia. Możemy
chcieć mimo wszystko pogrupować dane.

Np. producent koszulek T-shirt zrobił
badania antropometryczne aby
zaprojektować dobrze dopasowane
koszulki w kilku rozmiarach (np.: S,M,L):

Algorytm nadal działa poprawnie,
znajdując zadaną liczbę skupień
w oparciu o odległości:
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Algorytm k-means — inicjalizacja

W najprostszym przypadku inicjalizacja może być przypadkowa, np. dowolne K próbek
zbioru treningowego. Jednak nie zawsze daje to dobre wyniki.

W przypadku jak powyżej po lewej można uzyskać pożądane rozwiązanie (powyżej po
prawej). Jednak niefortunna inicjalizacja może wygenerować rozwiązania jak poniżej.
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Algorytm k-means — inicjalizacja (cd.)

Jak zapobiec niefortunnej inicjalizacji, która może prowadzić do wygenerowania
nieoptymalnych skupień, osiągających lokalne maksimum funkcji kosztu?

Podobnie jak w metodzie wyżarzania, można porzucić wygenerowane centroidy,
i wybrać je ponownie losowo. Jednak aby porównać miarę jakości (funkcję kosztu, czyli
ważoną sumę odległości wszystkich punktów od centroidów ich skupień), należy
doprowadzić algorytm w obu przypadkach do końca.

W praktyce oznacza to wielokrotne (100?, 1000 razy?) powtórzenie algorytmu k-means
dla losowo wybranych punktów startowych, i wybraniu globalnie najlepszego
rozwiązania.

Istnieją podejścia do inicjalizacji algorytmu k-means bardziej „naukowe” niż próby
losowe, np. algorytm inicjalizacji o nazwie k-means++, który znacząco poprawia wynik
następującego po nim zastosowania k-means. K-means++ wykonuje k przebiegów na
zbiorze danych, zatem nie skaluje się dobrze dla dużych zbiorów. Jego ulepszenie
o nazwie k-means‖ daje równoważne wyniki i jest znacznie lepiej skalowalny.

1.D.Arthur, S.Vassilvitskii: “K-means++: the advantages of careful seeding”, 2007
2.B.Bahmani, B.Moseley, A.Vattani, R.Kumar, S.Vassilvitskii: “Scalable K-means++”
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Algorytm k-means — określenie liczby skupień

Wymagana przez algorytm liczba skupień K nie zawsze jest z góry znana, i czasami
trzeba ją określić eksperymentalnie.

Metoda punktu łokcia (elbow point):
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Metoda punktu łokcia nie zawsze się sprawdza. Często krzywa nie wykazuje
charakterystycznego punktu załamania, i po prostu asymptotycznie maleje wraz ze
wzrostem liczby skupień.

Niestety, w tym przypadku nie możemy próbować optymalizacji kryterium jakości, czyli
ważonej sumy odległości wszystkich punktów od ich centroidów. Albowiem ta suma
osiąga zero dla liczby skupień równej liczbie próbek K = N .

W takim przypadku można odwołać się do specyfiki problemu, z którego pochodzą
próbki. Należy dokonać subiektywnej oceny, jaka liczba skupień będzie odpowiednia dla
tej dziedziny problemowej.
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Algorytm k-means — problemy specjalne

Algorytm k-means dobrze działa w wielu przypadkach praktycznych, jednak są
przypadki, gdzie definitywnie nie radzi sobie. Takimi przypadkami są skupienia różniące
się wielkością, a także skupienia różniące się gęstością próbek w zbiorze treningowym.
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Algorytm k-means — problemy specjalne (2)

Problem z wklęsłymi skupieniami
można rozwiązać pośrednio,
zwiększając liczbę skupień.
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Algorytm k-means — podsumowanie

Algorytm k-means jest prostym i skutecznym algorytmem analizy skupień. Jego
złożoność obliczeniowa wynosi O(tKN) gdzie K, N są odpowiednio liczbą skupień
i próbek, natomiast t jest liczbą iteracji algorytmu. Zwykle K, t≪ N .

Jednak posiada kilka istotnych problemów, które utrudniają, lub uniemożliwiają jego
zastosowanie:

• wymaga wyznaczenia liczby skupień K,

• wrażliwy na inicjalizację centroidów, może zbiegać się do maksimów nielokalnych,

• ma zastosowanie do danych liczbowych (obliczanie średnich i odległości), problemy
z danymi kategorycznymi,

• problemy ze skupieniami o niewypukłych kształtach,

• problemy ze skupieniami różniącymi się wielkościami,

• problemy ze skupieniami różniącymi się gęstościami.
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Algorytm EM — Expectation Maximization

Można zastosować podejście podobne do algorytmu k-means na gruncie
probabilistycznym. Zakładając, że punkty zbioru treningowego należą do K skupień
z pewnym losowym rozkładem prawdopodobieństwa, naturalnie jest przyjąć, że te
skupienia wynikają z normalnych rozkładów prawdopodobieństw, tzw. mieszaniny
rozkładów normalnych albo gausowskich (mixture of Gaussians). Algorytm EM
(Expectation Maximization) uczy się parametrów takiej mieszaniny rozkładów.

Rysunek po lewej przedstawia mieszaninę trzech symulowanych rozkładów normalnych.
Środkowy rysunek przedstawia zbiór punktów wygenerowanych dla tego rozkładu.
Rysunek po prawej przedstawia mieszaninę rozkładów wyuczoną przez algorytm EM.
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Algorytm EM — Expectation Maximization (cd.)

Zakładając, że zmienna C oznacza składową mieszaniny z wartością 1, ..., K, rozkład
prawdopodobieństwa mieszaniny dany jest wzorem:

P (x) =
K
∑

i=1
P (C = i)P (x|C = i)

gdzie x jest wektorem atrybutów próbki.

Parametrami rozkładu są: wi = P (C = i) (waga składowej i), µi (średnia składowej
i), i ∑

i (kowariancja składowej i).

Idea algorytmu polega na tym, że początkowo zakładamy pewne wartości parametrów
powyższego rozkładu. W każdym cyklu algorytmu, dla każdego punktu obliczane są
prawdopodobieństwa, że należy on do poszczególnych składowych. Następnie,
przeliczane są parametry wszystkich składowych na podstawie wszystkich punktów,
z wagami będącymi prawdopodobieństwami przynależności danego punktu do danej
składowej. Te dwa kroki powtarzane są aż do uzyskania zbieżności algorytmu,
podobnie jak w metodzie k-means.
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Algorytm EM — Expectation Maximization (cd.)

Algorytm EM:

Inicjalizacja: ustaw wartości początkowe parametrów wszystkich składowych

REPEAT {

Krok E: Oblicz prawdopodobieństwa pij = P (C = i|xj), że próbka xj należy do
składowej i. Na mocy reguły Bayesa mamy: pij = αP (xj|C = i)P (C = i).
Określamy ni = ∑

j pij, czyli efektywną liczbę punktów aktualnie przypisanych do
składowej i.

Krok M: Oblicz nowe średnie, kowariancje, i wagi składowych za pomocą
następujących wzorów:

µi ←
∑

j
pijxj/ni

Σi ←
∑

j
pij(xj − µi)(xj − µi)

⊤/ni

wi ← ni/N

}
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Algorytm EM — Expectation Maximization (cd.)

Algorytm EM nie jest wolny od pewnych problemów. Możliwy jest przypadek, kiedy
jedna ze składowych zredukuje się do pojedynczego punktu, z zerową wariancją
i prawdopodobieństwem równym 1. Innym problemem jest nałożenie się dwóch
składowych, które następnie współdzielą ten sam zbiór punktów.

Takie zjawiska prowadzą do zbiegnięcia się algorytmu w lokalnym maksimum. Jest to
poważny problem, zwłaszcza w wielowymiarowych przestrzeniach. Rozwiązaniem może
być reinicjalizacja składowej z nowymi parametrami, podobnie jak w przypadku
algorytmu k-means.
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Związek pomiędzy metodami k-means i EM

Algorytmy są w pewnym sensie podobne, realizują na przemian dwa kroki: (1)
generowanie skupień, i (2) przenoszenie próbek pomiędzy skupieniami.

Jedną istotną różnicą jest, że w algorytmie k-means punkty przypisywane są
skupieniom w sposób kategoryczny, podczas gdy EM przypisuje wszystkim punktom
prawdopodobieństwa przynależności do poszczególnych dystrybucji.

Inną różnicą jest model gausowski, leżący u podstaw działania algorytmu EM.
Algorytm k-means jest w stanie generować dystrybucje wynikowe, które nie są w żaden
sposób podobne do rozkładów gausowskich. Z drugiej strony, wiele zjawisk naturalnych
jest zgodnych z modelem gausowskim, zatem algorytm EM działa dla nich poprawnie.
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DBSCAN — analiza skupień oparta na gęstości

DBSCAN to algorytm opracowany w celu pokonania trudności algorytmu k-means
w poprawnym rozpoznawaniu skupień o nietypowym kształtach:

• klasyfikuje wszystkie punkty jako:
centralne (core) pewnego skupienia,
graniczne (border) skupienia, albo
szum (outliers) — czyli takie, które nie
należą do żadnego skupienia,

• nie wymaga wcześniejszego określenia
liczby skupień,

• może znaleźć skupienia o dowolnym
kształcie; może nawet znaleźć skupienie
całkowicie otoczone przez (ale nie
połączone z) innymi skupieniami,

• wymaga dwóch parametrów: minPts

określa minimalną liczbę punktów
sąsiednich, aby zadeklarować punkt jako
punkt centralny, a eps określa promień
sąsiedztwa punktu.
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Algorytm DBSCAN

1. Zidentyfikuj punkty centralne:
Dla każdego punktu w zbiorze danych policz liczbę punktów w jego sąsiedztwie
o promieniu eps; jeśli przekracza minPts, oznacz punkt jako centralny.

2. Utwórz skupienia:
Wyznacz spójne składowe grafu eps-sąsiedztwa punktów centralnych. Każda spójna
składowa tworzy oddzielne skupienie.

Wszystkie punkty niecentralne w odległości eps od skupienia również należą do tego
skupienia, ale są oznaczone jako graniczne.

Punkty w takich skupieniach są
połączone gęstościowo.

3. Zidentyfikuj szumy:
Po przetworzeniu wszystkich punktów,
każdy punkt, który nie należy do
skupienia, jest oznaczany jako szum.
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Hierarchiczna analiza skupień

Analizę skupień można przeprowadzić, budując hierarchię skupień jednym z dwóch
podstawowych sposobów:

• od dołu do góry, zaczynając od każdej próbki reprezentującej osobny klaster,
następnie łącząc je w pary, i dalej budując większe klastry;
takie podejście jest określane jako aglomeracyjne (agglomerative clustering),

• od góry do dołu, zaczynając od jednego klastra reprezentującego wszystkie próbki,
następnie dzieląc większe klastry na mniejsze;
podejście nazywane metodą deglomeracyjną (divisive clustering).

Decyzje o tym, które klastry powinny zostać połączone, lub które podzielone,
i dokładnie jak, zwykle są oparte na pomiarach odległości między próbkami
oraz klastrami.

W pewnym sensie jest to podobne do algorytmu k-means, ale jest również odmienne
przez konieczność mierzenia odległości między klastrami.
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Aglomeracyjna analiza skupień — przykład

Bardziej powszechne są metody aglomeracyjne. Przykład:

Powstałe drzewo można odciąć na pewnej wysokości, aby uzyskać pożądaną liczbę
klastrów.
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Metryki odległości między klastrami

Stosuje się szereg metod pomiaru odległości między klastrami:

• MIN — ma tendencję do tworzenia długich rozproszonych klastrów

• MAX — ma tendencję do tworzenia bardziej kompaktowych klastrów

• uśrednianie grupowe — uwzględnia średnią odległość między każdym punktem
w jednym klastrze do każdego punktu w drugim

• odległość pomiędzy centroidami —

• metoda Warda — podobna do uśredniania grupowego, ale sumuje kwadraty
odległości, w praktyce minimalizując całkowitą wariancję wewnątrz klastra
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Redukcja wymiaru

Istnieje szereg metod redukcji wymiaru pozwalających przekształcić reprezentację
danych do innej przestrzeni, o mniejszym wymiarze. Jedną z przesłanek motywujących
takie przekształcenie jest klątwa wymiarowości, będąca jednym z głównych
problemów uczenia maszynowego.

Mówiąc obrazowo, wiele algorytmów uczenia maszynowego, które dobrze sprawują się
dla danych w niskowymiarowych przestrzeniach, przestają działać zadowalająco gdy
wymiar przestrzeni jest duży.

Z innego punktu widzenia, dane są typowo reprezentowane przez szereg parametrów,
z których niektóre mogą nie mieć istotnego wpływu na zdolność klasyfikacji lub
grupowania tych danych. Takie nadmiarowe parametry nie tylko nie pomagają
w automatycznym wykrywaniu wzorców istniejących w danych, ale istotnie w nim
przeszkadzają, ponieważ wprowadzają pozorne zależności skutecznie utrudniające pracę
algorytmów.

Zatem opłaca się, przed przystąpieniem do eksperymentu maszynowego uczenia,
wykonać analizę i redukcję wymiarowości. Jedną z niezwykle skutecznych jej metod
jest algorytm analizy składowych głównych PCA (Principal Component Analysis).
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Analiza składowych głównych (PCA) — przykład

Rozważmy pewien zbiór punktów:

Przesuwamy jego środek geometryczny do początku układu współrzędnych:
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Obliczamy macierz kowariancji dla przedstawionego zbioru punktów:
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Ta macierz kowariancji generuje pewne przekształcenie liniowe:

(x, y) −→ (9x + 4y, 4x + 3y)

To przekształcenie przenosi oryginalne punkty do układu współrzędnych, którego
osiami są wektory własne macierzy kowariancji, a rozciągnięcie liniowe generują
wartości własne:
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Oryginalne punkty są dokładnie reprezentowane w nowym układzie współrzędnych,
którego osie nazywane są składowymi głównymi. Jednak dla celów redukcji
wymiaru dążymy do wyboru tylko jednej współrzędnej. Musi nią być składowa główna
o największej wartości własnej.

Redukcja wymiaru oznacza reprezentację
punktów przez ich zrzutowanie do
przestrzeni o niższej wymiarowości, czyli
w tym wypadku na wybraną oś
współrzędnych.
Jest to zatem reprezentacja przybliżona.
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Algorytm PCA

Algorytm PCA znajduje M -wymiarowe przybliżenie zbioru danych {xn : n = 1, ..., N}
o wymiarze oryginalnym dim(xn) = D (M < D):

1. Wyznacz wektor średnich m zbioru próbek o rozmiarze D × 1 i macierz kowariancji
S o rozmiarze D ×D:

m =
1

N

N
∑

n=1
xn, S =

1

N − 1

N
∑

n=1
(xn −m)(xn −m)T .

2. Wyznacz wektory własne e1, ..., eD macierzy kowariancji S posortowane według
malejących wartości własnych wektorów własnych. Utwórz macierz E = [e1, ...eM ].

3. Niskowymiarowa reprezentacja yn, oraz przybliżona rekonstrukcja x′n każdej
z próbek n są dane przez:

yn = ET (xn −m), xn ≈ x′
n

= m + Eyn.

4. Całkowity błąd kwadratowy przybliżenia dla zbioru treningowego wynosi:
N
∑

n=1
(xn − x′

n
)2 = (N − 1)

D
∑

j=M+1
λj

gdzie λM+1, ..., λN są pominiętymi wartościami własnymi.
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Uwaga: algorytm PCA jest wrażliwy na wielkość wartości parametrów. Jeśli jeden
z parametrów będzie przyjmował wartości znacznie większe niż inny, to ten pierwszy
parametr zostanie wybrany jako największa główna składowa, a drugi jako kolejna.
Z tej przyczyny przed wykonaniem algorytmu PCA wymagane jest uniwersalne
skalowanie wszystkich parametrów.
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Analiza koszyka rynkowego

Istnieje szereg metod drążenia danych/uczenia maszynowego dotyczących zakupów.
Zwróćmy uwagę na dwa rodzaje rekomendacji wyświetlanych przez portale
sprzedażowe takie jak Amazon:

• Często kupowane razem: ...

• Klienci, którzy kupili ten produkt kupili również ...

Pierwsza grupa metod jest określana jako analiza koszyka rynkowego (Market

Basket Analysis). Metody MBA koncentrują się na odkrywaniu reguł
asocjacyjnych (association rule mining) charakteryzujących typowo wykonywane
zakupy, czyli znajdowaniu związków pomiędzy różnymi artykułami kupowanymi
w różnych transakcjach. Takie związki reprezentowane są na przykład w postaci reguł
JEŻELI-TO. Jednym z najbardziej znanych algorytmów tej grupy jest Apriori.

Nieco inne podejście do drążenia danych historii transakcji zakupowych wyrażają
systemy rekomendacji (Recommender Systems). Zmierzają one do określania
preferencji indywidualnych konsumentów. Najbardziej znane algorytmy należą do grupy
filtrowania kolaboracyjnego (collaborative filtering), i będą omówione później.
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Analiza koszyka rynkowego — model

Rozważamy historię transakcji zakupowych jako zbiór transakcji T = {t1, t2, ..., tn},
gdzie pojedyncza transakcja jest podzbiorem t ⊆ I zbioru wszystkich dostępnych
elementów I = {ii, i2, ..., im}.

Przykład:
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Analiza koszyka rynkowego — reguły asocjacyjne
Chcemy odkrywać związki pomiędzy elementami transakcji zakupowych w postaci
reguł asocjacyjnych postaci, przyjmując, że A i B są rozłącznymi (A ∩B = ∅)
zbiorami elementów zakupowych (A, B ⊆ I):

A⇒ B

Takich związków istnieje zapewne wiele w całej historii kupowania, lecz jedne mogą
być silniejsze niż inne. Wprowadzamy następujące miary wiarygodności reguły A⇒ B
na podstawie zbioru transakcji T .

Wsparciem (Support) reguły A⇒ B w zbiorze transakcji T nazywamy częstotliwość
transakcji, które zawierają wszystkie elementy z A i B:

Support(A⇒ B) = P (A ∪B)

Support(X) = P (X)

Zaufaniem (Confidence) reguły A⇒ B w zbiorze transakcji T nazywamy
częstotliwość takich transakcji zawierających B, które również zawierają A:

Confidence(A⇒ B) = P (B|A)

Inaczej mówiąc, zaufanie reguły mówi jak często była ona prawdziwa w zbiorze
transakcji.
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Dodatkowo definiujemy Przyrost (Lift) jako ułamek:

Lift(A⇒ B) =
P (A ∪B)

P (A) · P (B)

Przyrost wskazuje ogólne znaczenie reguły w następującym sensie:

Lift(A⇒ B) > 1 oznacza, że A, B są dodatnio skorelowane

Lift(A⇒ B) < 1 oznacza, że A, B są ujemnie skorelowane

Lift(A⇒ B) = 1 oznacza, że A, B są niezależne
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Analiza koszyka rynkowego — zbiory częste

Poszukiwanie reguł asocjacyjnych wymaga zdefiniowania minimalnego progu wsparcia
oraz minimalnego progu zaufania. Wyznaczenie wszystkich reguł asocjacyjnych może
być zrealizowane następująco:

• Znajdź wszystkie zbiory częste kupowanych elementów.

Zbiór elementów jest częsty jeśli przekracza zadany próg wsparcia minsupport.

• W obrębie każdego zbioru częstego wyznacz właściwe reguły asocjacyjne.

Reguła asocjacyjna jest musi przekraczać minimalny próg zaufania minconf aby
zostać wybrana.

Znajdowanie zbiorów częstych wymaga sprawdzania wszystkich podzbiorów zbioru
elementów I , których jest 2|I| − 1 (z pominięciem podzbioru pustego). Zwykły pełny
przegląd tych podzbiorów byłby zbyt nieefektywny.
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Algorytm Apriori — generowanie zbiorów częstych

Własność apriori : wszystkie podzbiory zbioru częstego są również zbiorami częstymi.
I na odwrót: nadzbiór zbioru, który nie jest częsty, również nie może być częsty.

Tę własność można wykorzystać dla efektywnej generacji zbiorów częstych według idei:
znajdź wszystkie częste zbiory jednoelementowe, następnie na ich bazie wygeneruj
wszystkie zbiory dwuelementowe i odfiltruj z nich tylko zbiory częste, następnie tak
samo utwórz trzyelementowe zbiory częste, itd.

Algorytm:

1. Utwórz kolekcję jednoelementowych zbiorów częstych F1.

2. Dla k=2..|I| dopóki Fk−1 6= ∅ wykonuj:

(a) na podstawie Fk−1 utwórz kolekcję Ck takich k-elementowych kandydatów ck na
zbiory częste, które są połączeniem dwóch (k − 1)-elementowych zbiorów
częstych f i

k−1 i f j
k−1 o (k − 2) elementach wspólnych

(b) każdy (k − 1)-elementowy podzbiór ck musi być zbiorem częstym w Fk−1

(c) utwórz kolekcję k-elementowych zbiorów częstych Fk odfiltrowując z Ck zbiory
nieczęste.

Warunek (b) powoduje wczesne filtrowanie zbiorów nieczęstych na podstawie własności
apriori.
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Algorytm Apriori — generowanie reguł asocjacyjnych

Algorytm generowania reguł:

1. Dla każdego zbioru częstego X

(a) Dla każdego właściwego i niepustego podzbioru A zbioru X :
niech B = X \A
A⇒ B będzie regułą asocjacyjną jeśli: Confidence(A⇒ B) ≥ minconf
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Algorytm Apriori — przykład

Rozważmy bazę danych transakcji zakupowych:

ID Elementy
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

Do wykonania algorytmu Apriori przyjmiemy parametry minsupport=0.5;
minconf =0.75.

Pierwsza iteracja:

ID Elementy
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒ C1:

zbiór Support
{I1} 2/4=0.5
{I2} 3/4=0.75
{I3} 3/4=0.75
{I4} 1/4=0.25
{I5} 3/4=0.75

⇒ F1:

zbiór Support
{I1} 0.5
{I2} 0.75
{I3} 0.75
{I5} 0.75
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Druga iteracja:

ID Elementy
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒ C2:

zbiór Support
{I1,I2} 1/4=0.25
{I1,I3} 2/4=0.5
{I1,I5} 1/4=0.25
{I2,I3} 2/4=0.5
{I2,I5} 3/4=0.75
{I3,I5} 2/4=0.5

⇒ F2:

zbiór Support
{I1,I3} 2/4=0.5
{I2,I3} 2/4=0.5
{I2,I5} 3/4=0.75
{I3,I5} 2/4=0.5

Trzecia iteracja:
ID Elementy
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒ C3:

zbiór Support
{I1,I2,I3} 1/4=0.25
{I1,I3,I5} 1/4=0.25
{I2,I3,I5} 2/4=0.5

⇒ F3:
zbiór Support

{I2,I3,I5} 2/4=0.5

Należy zauważyć, że zbiory {I1,I2,I3} i {I1,I3,I5} nawet przed obliczeniem ich wsparcia
zostały odrzucone przez algorytm Apriori, ponieważ zawierają podzbiory nie należące
do F2 (krok 2b algorytmu).

Algorytm zatrzymał się na czwartej iteracji, ponieważ zbiór C4 jest pusty. Do generacji
reguł przechodzą zbiory częste z F2 i F3 ponieważ jednoelementowe zbiory z F1 nie
generują żadnych reguł.
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Generacja reguł:

ID Elementy
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒

ID zbiór reguła Confidence
R1 {I1,I3} {I1} ⇒ {I3} 2/2=1.0
R2 {I1,I3} {I3} ⇒ {I1} 2/3=0.66
R3 {I2,I3} {I2} ⇒ {I3} 2/3=0.66
R4 {I2,I3} {I3} ⇒ {I2} 2/3=0.66
R5 {I2,I5} {I2} ⇒ {I5} 3/3=1.0
R6 {I2,I5} {I5} ⇒ {I2} 3/3=1.0
R7 {I3,I5} {I3} ⇒ {I5} 2/3=0.66
R8 {I3,I5} {I5} ⇒ {I3} 2/3=0.66
R9 {I2,I3,I5} {I2,I3} ⇒ {I5} 2/2=1.0
R10 {I2,I3,I5} {I2,I5} ⇒ {I3} 2/3=0.66
R11 {I2,I3,I5} {I3,I5} ⇒ {I2} 2/2=1.0
R12 {I2,I3,I5} {I2} ⇒ {I3,I5} 2/3=0.66
R13 {I2,I3,I5} {I3} ⇒ {I2,I5} 2/3=0.66
R14 {I2,I3,I5} {I5} ⇒ {I2,I3} 2/3=0.66

Ostatecznie dla zadanych parametrów algorytm Apriori wygenerował pięć reguł
asocjacyjnych.

Uczenie nienadzorowane — analiza koszyka rynkowego: algorytm Apriori 46



Systemy rekomendacji

Przyjrzymy się teraz innemu podejściu związanemu z analizą danych zakupowych,
dotyczącemu systemów rekomendacji. Chcąc zarekomendować jakiś towar pewnemu
konsumentowi chcemy przewidzieć jego możliwą ocenę tego towaru. Dla tej procedury
wyznaczania możliwej oceny konsumenta jest często używane określenie filtrowania,
które w statystyce jest stosowane w odniesieniu do aproksymowania wielkości
bieżących (a nie przyszłych albo przeszłych).

Aby wyznaczyć spodziewaną ocenę towaru A przez konsumenta X możemy zastosować:

filtrowanie kolaboracyjne, oparte na podobieństwie konsumentów
(collaborative filtering)
jeśli konsument X jest podobny do Y, i Y kupił A; poleć A konsumentowi X

filtrowanie oparte na podobieństwie treści (content-based filtering)
jeśli konsument X kupił A, i A jest podobne do B; poleć B konsumentowi X

Są również możliwe podejścia hybrydowe w różny sposób łączące oba powyższe.

Systemy rekomendacji uczą się wyznaczania konkretnych wartości na podstawie
zapamiętanych danych, a więc formalnie należą do metod uczenia nadzorowanego.
Omawiamy je w grupie algorytmów poświęconej uczeniu nienadzorowanemu ze
względu na podobieństwo zastosowań.
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Filtrowanie kolaboracyjne i oparte na podobieństwie treści

Zasadniczo zadanie wyznaczenia nieznanego parametru A próbki X gdy parametr ten
jest znany w serii uczącej, jest typowym zadaniem klasyfikacji (gdy wartości parametru
A mają charakter dyskretny) lub regresji (gdy te wartości wybierane są z ciągłego
zakresu liczbowego). Zatem można do nich stosować wcześniej poznane algorytmy. To
podejście do zagadnienia rekomendacji określane jest jako model based.

Możliwe jest jednak jeszcze inne podejście, polegające na wyborze z posiadanego
zbioru danych próbek dotyczących konsumentów „podobnych” w jakimś sensie do
konsumenta X, i oparcie rekomendacji na parametrach tylko tych konsumentów. (Albo,
w przypadku filtrowania opartego na podobieństwie treści, na wyborze tylko towarów
„podobnych” do przedmiotowego A.) To podejście określane jest jako memory-based

i zostanie tu pokrótce przedstawione.

Jedną z zalet tego ostatniego podejścia jest, że otrzymany wynik jest łatwo
przedstawić w kontekście i uzasadnić.
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Filtrowanie kolaboracyjne — obliczanie podobieństwa

konsumentów

Zakładając, że dostępne dane zawierają oceny wielu towarów wyznaczone przez
konsumentów, możemy obliczać „podobieństwo” konsumentów X i Y na podstawie ich
ocen rx,1, rx,2, ..., ry,1, ry,2... pewnej grupy towarów Ixy ocenionych przez obu
konsumentów, korzystając z jednego z poniższych modeli podobieństwa.

Model podobieństwa Pearsona:

simil(x, y) =

∑

i∈Ixy

(rx,i − r̄x)(ry,i − r̄y)
√

√

√

√

√

∑

i∈Ixy

(rx,i − r̄x)2
√

√

√

√

√

∑

i∈Ixy

(ry,i − r̄y)
2

Podobieństwo obliczone jako cosinus kąta między wektorami atrybutów:

simil(x, y) = cos(~x, ~y) =
~x · ~y

||~x|| × ||~y||
=

∑

i∈Ixy

rx,iry,i

√

√

√

√

√

∑

i∈Ixy

r2
x,i

√

√

√

√

√

∑

i∈Ixy

r2
y,i
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Filtrowanie kolaboracyjne — wyznaczanie oceny konsumenta

Mając podobieństwa konsumentów obliczone ze względu na oceniane towary, możemy
wybrać pewien zbiór U N konsumentów najbardziej zbliżonych do danego konsumenta
u, i wyznaczyć jego ocenę towaru i jako:

ru,i =
1

N

∑

u′∈U
ru′,i lub:

ru,i =

∑

u′∈U
simil(u, u′)ru′,i

∑

u′∈U
|simil(u, u′)|

lub:

ru,i = r̄u +

∑

u′∈U
simil(u, u′)(ru′,i − r̄u′)

∑

u′∈U
|simil(u, u′)|

Pierwsza wersja jest zwykłą średnią ocen „podobnych” konsumentów, druga jest
średnią ocen ważoną wzajemnym podobieństwem konsumentów, a trzecia dodatkowo
uniezależnia się od bezwzględnej wartości ocen poszczególnych konsumentów,
uwzględniając tylko różnice od ich średnich ocen, i przenosząc uzyskaną względną
zwyżkę lub zniżkę oceny towaru i na średnią ocenę konsumenta u.
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Filtrowanie oparte na podobieństwie treści

W przypadku filtrowania opartego na podobieństwie treści posługujemy się tymi
samymi danymi ocen wielu towarów przez wielu konsumentów, ale tym razem
obliczamy macierz podobieństw towarów, stosując te same wzory podobieństwa.

Następnie wyznaczamy zbiór N towarów najbardziej podobnych do towaru, którego
ocenę dla konsumenta u chcemy wyznaczyć, i określamy ocenę jedną z metod
uśredniania podobnie jak w przypadku uśredniania ocen konsumentów.
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Faktoryzacja macierzy ocen

Całkowicie odmiennym podejściem do filtrowania kolaboracyjnego jest idea faktoryzacji
oryginalnej macierzy ocen R ∈ Rusers×items na dwie macierze, z których pierwsza H
ma rzędy odpowiadające wszystkim konsumentom, a druga W ma kolumny
odpowiadające wszystkim towarom. Kolumny pierwszej i rzędy drugiej macierzy są
związane z nowo utworzonymi zmiennymi ukrytymi (latent factors) w taki sposób,
że iloczyn wektorowy macierzy H i W możliwie wiernie przybliża macierz ocen,
i zatem uzupełnia oceny, których brakuje i które należy wyznaczyć:

R̃ = H ×W

gdzie:
R̃ ∈ Rusers×items jest macierzą predykcji ocen,
H ∈ Rusers×latent factors jest macierzą zmiennych ukrytych dla danego użytkownika,
W ∈ Rlatent factors×items jest macierzą zmiennych ukrytych towarów
(transponowaną).

Ta idea faktoryzacji macierzy (matrix factorization) ma na celu wyłonienie pewnej
liczby zmiennych stanu (zmiennych ukrytych) pozwalających wyrażać oceny za pomocą
macierzy o mniejszej wymiarowości. Stanowi to pewien odpowiednik metody analizy
składowych głównych (Pricipal Component Analysis, PCA).
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Metody faktoryzacji macierzy ocen

Zmienne ukryte wyznacza się zwykle metodami uczenia maszynowego, na przykład
sieciami neuronowymi. Zaproponowanych został szereg metod faktoryzacji macierzy
ocen. Pierwsza wersja faktoryzacji macierzy ocen, zwana Funk MF powstała
w odpowiedzi na konkurs Netflixa. W tej wersji predykcja r̄ui oceny użytkownika
u towaru i jest obliczana według wzoru:

r̄ui =
n factors

∑

f=0
H [u, f ]W [f, i]

Siła ekspresji przestrzeni zmiennych ukrytych jest związana z jej wymiarem. Dla jednej
zmiennej ukrytej ta reprezentacja sprowadza się do wyboru najczęściej
rekomendowanego towaru, niezależnie od konsumenta. Zwiększanie liczby zmiennych
pozwala na wprowadzenie personalizacji, i jakość rekomendacji wynikających z wartości
ocen się zwiększa, a powyżej pewnej liczby zmiennych zaczyna mieć tendencję do
przeuczenia. Dla uniknięcia przeuczenia stosowana jest regularyzacja polegająca na
dodaniu składnika regularyzacyjnego do funkcji oceny.

Metoda Funk MF minimalizuje funkcję oceny:

argminH,W ||R− R̃||F + α||H|| + β||W ||

gdzie ||.||F jest normą Frobeniusa będącą pewnym uogólnieniem normy Euklidesowej.
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Uczenie się bayesowskich sieci przekonań

Przypomnijmy sobie sieci bayesowskie i ćwiczenie z budową sieci dla danego zbioru
danych. Widzieliśmy, że niektóre programy do budowy i obliczeń na takich sieciach
miały funkcję automatycznej budowy sieci. Jak mógłby działać taki algorytm?

Przypomnijmy sobie podstawowe zasady budowy sieci bayesowskich:

• sieć bayesowska jest acyklicznym grafem skierowanym (DAG — Directed Acyclic

Graph), lub zbiorem acyklicznych grafów skierowanych, tzn. dopuszczamy
rozdzielenie zbioru zmiennych losowych na podzbiory (partycje), które są od siebie
całkowicie niezależne,

• zmienne losowe, które są niezależne, nie są bezpośrednio połączone,

• zmienne losowe, z których jedna zależy bezpośrednio od drugiej, połączone są
łukiem skierowanym, wskazującym zależność,

• ogólnie korzystne są sieci o małej liczbie łuków — zwłaszcza małej liczbie rodziców
każdego węzła — ponieważ wielu rodziców oznacza rozbudowane rozkłady
prawdopodobieństw warunkowych, które są złożone obliczeniowo, i dla których
estymacji potrzeba wielkich ilości danych.
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Rozważymy to zagadnienie po kolei na dwóch poziomach.

Najpierw założymy, że struktura sieci jest znana, natomiast zbiór danych uczących jest
niekompletny, i brak wartości pewnych zmiennych. Chcemy nauczyć się kompletnych
parametrów sieci, tzn. wszystkich rozkładów prawdopodobieństw warunkowych.

Z kolei, założymy, że dane uczące są kompletne, ale struktura sieci nie jest znana,
i chcemy wygenerować najbardziej poprawną strukturę sieci dla danego zbioru danych.
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Wyznaczanie parametrów sieci przekonań

Zakładamy, że znana jest struktura sieci, i zbiór danych uczących, w których jednak
brakuje pewnych wartości. Zauważmy, że sieć bayesowska służy do określania
najbardziej prawdopodobnych wartości pewnych parametrów, gdy dane są (dowolne)
inne parametry. Możemy to wykorzystać do uzupełnienia brakujących parametrów.

Zastosujemy pewną wersję algorytmu EM (Expectation Maximization), który działa
przez powtarzanie następujących dwóch kroków, do osiągnięcia zbieżności:

Inicjalizacja: oblicz wstępne wartości parametrów sieci, ignorując brakujące dane.

Krok E (Expectation): dla każdej próbki danych oblicz wartości oczekiwane
parametrów, których wartości brakuje.

Krok M (Maximization): oblicz nowe parametry sieci (warunkowe rozkłady
prawdopodobieństw wszystkich zmiennych).

Algorytm EM jest dość ogólnym schematem, znajdującym zastosowanie do szeregu
różnych problemów. Działa obliczając na przemian: lepsze przybliżenie poszukiwanych
wartości (krok E), i lepszy, zoptymalizowany model (krok M).
Pytanie: jaka jest wada tego podejścia?
Odpowiedź: jest to algorytm gradientowy, podatny na zbiegnięcie się do lokalnego,
zamiast globalnego, maksimum funkcji oceny.
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Wyznaczanie parametrów sieci przekonań — maksima lokalne

Algorytm EM wykonuje przeszukiwanie gradientowe, i zbiega się do lokalnego
maksimum funkcji jakości. W ogólnym przypadku możemy nigdy nie mieć pewności, że
znalezione maksimum jest globalne. To jednak może nie być do końca zła wiadomość.

Krzywa kryterium jakości parametrów sieci może mieć wiele lokalnym maksimów, ale w
sumie niekoniecznie jest istotne, aby jako rozwiązanie znaleźć jego globalne maksimum.

W uczeniu maszynowym celem nie jest maksymalne dopasowanie modelu do zbioru
uczącego, lecz uogólnianie. Nie ma wcale pewności, że globalne maksimum będzie
oferować najlepsze uogólnianie. Dlatego jako wynik wyznaczania parametrów sieci
bayesowskiej algorytmem EM można przyjąć dowolne optimum lokalne, jeśli mamy
przekonanie, że nie jest ono dużo gorsze od globalnego.
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Wyznaczanie parametrów sieci bayesowskiej — przykład

✲ ✲ CBA

Próbki: 0 1 1
1 0 0
1 1 1
1 ? 0

Inicjalizacja: P (B|A) = 0.5 P (C|B) = 1.0
P (A) = 0.75 P (B|¬A) = 1.0 P (C|¬B) = 0.0

Krok E: P (? = 1) = P (B|A,¬C) = P (A,B,¬C)
P (A,¬C) = ... = 0

P (A, B,¬C) = P (A) ∗ P (B|A) ∗ P (¬C|A, B) = P (A) ∗ P (B(|A) ∗ P (¬C|B)
= 0.75 ∗ 0.5 ∗ 0.0

P (A,¬C) = P (A, B,¬C) + P (A,¬B,¬C) = ...

Krok M: P (B|A) = 0.33 P (C|B) = 1.0
P (A) = 0.75 P (B|¬A) = 1.0 P (C|¬B) = 0.0

Krok E: P (? = 1) = 0 (algorytm zbiegł się)
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Uczenie się struktury

Generowanie struktury sieci jest zadaniem trudnym obliczeniowo. Dla D zmiennych
istnieje eksponencjalnie wiele struktur grafowych łączących odpowiednie węzły.
Skuteczny algorytm poszukiwania optymalnej struktury grafu musi stosować heurystyki
i/lub dodatkowe założenia ograniczające.

Istnieje szereg takich algorytmów. Przeanalizujemy tu dwa z nich:

• algorytm PC tworzący szkielet grafu nieskierowanego, począwszy od grafu w pełni
połączonego, przez usuwanie krawędzi łączących zmienne, które mogą być uznane
za niezależne, albo są zależne, ale są warunkowo niezależne pod warunkiem trzeciej
zmiennej, z którą obie są połączone,

• algorytm określający kierunki łuków grafu na podstawie informacji o ich warunkowej
niezależności.
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Algorytm PC generowania szkieletu grafu



Algorytm PC:
utwórz w pełni połączony nieskierowany graf G zbioru wierzchołków V
i=0
repeat

for x ∈ V
do

for y ∈ Neighbors(x)
do

sprawdź, czy istnieje podzbiór S o liczności i sąsiadów x (poza y),
dla których x ⊥⊥ y | S

jeśli istnieje taki zbiór S to usuń krawędź x− y z grafu G i Sxy = S
done

done
i = i + 1

until wszystkie wezły mają co najwyżej i sąsiadów połączonych

Zauważmy, że algorytm buduje zbiory Sxy dla wszystkich par węzłów x, y które nie
mają połączenia w grafie. Zbiory te stanowią „uzasadnienie” usunięcia danej krawędzi
z grafu, i będą służyć do prawidłowego skierowania pewnych łuków na ścieżce
pomiędzy x i y.
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Zasady eksperymentalnego określania warunkowej

niezależności

Algorytm PC wymaga odpowiedzenia na pytanie, czy dwie zmienne x, y są od siebie
niezależne pod warunkiem trzeciej zmiennej z. W praktyce wymaga to przyjęcia
pewnego progu decyzyjnego, ponieważ dla małych zbiorów danych, dwie zmienne
zawsze okazują się w pewnym stopniu — być może niewielkim — od siebie zależne.
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Zasady określania kierunku łuków grafu

Określanie skierowania łuków grafu nie jest dobrze określonym algorytmem. Tylko
w niektórych przypadkach można stwierdzić coś z pewnością. Takim przypadkiem jest
sytuacja, gdy dwie zmienne x, y niezależne (bezwarunkowo), są połączone poprzez
trzecią zmienną z. W tej sytuacji zmienna z jest nazywana zderzaczem (collider).

W przypadku, gdy w tej samej konfiguracji, zmienne x, y są niezależne warunkowo pod
warunkiem z, dopuszczalne są wszystkie trzy pozostałe konfiguracje skierowań.
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Określanie kierunku łuków grafu

Algorytm określania skierowania łuków

1. Sprawdź nieskierowane łuki x− z − y; jeśli z 6∈ Sxy to ustaw x→ z ← y
2. repeat

przekształć wszystkie x→ z − y na x→ z → y
dla wszystkich x− y, jeśli nie istnieje skierowana ścieżka od x do y, ustaw x→ y
jeśli dla x− z − y istnieje w takie, że x→ w, y → w, z − w, ustaw z → w

until nie da się już ustawić więcej skierowań

3. pozostałe łuki mogą być skierowane dowolnie, pod warunkiem, że graf nadal nie ma
cykli skierowanych, i nie zostaną wprowadzone dodatkowe collidery
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Materiały

W tej prezentacji wykorzystane zostały materiały z następujących opracowań:

1. Andrew Ng: Unsupervised learning, Coursera video lecture

2. Stuart J. Russell, Peter Norvig: Artificial Intelligence A Modern Approach (Third
Edition), Prentice-Hall, 2010

3. Kevin P. Murphy: Machine Learning A Probabilistic Perspective, MIT Press, 2012

4. Pedro Domingos: Data Mining, Machine learning, cykl wykładów wideo dostępnych
przez Youtube, Paul G. Allen School of Computer Science & Engineering, University of
Washington, 2016

5. Wikipedia: Collaborative filtering
https://en.wikipedia.org/wiki/Collaborative_filtering

6. Wikipedia: Matrix factorization (recommender systems)
https:

//en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

7. David Barber: Bayesian Reasoning and Machine Learning, Cambridge University
Press, 2012
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