
Machine learning

An agent is learning if she improves her performance on future tasks after making
observations of her environment and previous achievements.

This can raise two sorts of doubts.

First, the human intelligence seems inherently possessing the ability to learn. The
human reasoning processes appear inseparable from the learning processes. We would
not consider intelligent a person who hasn’t learned from her experience, at least in
the simplest ways. So why is it separate in artificial intelligence?

There is no clear answer to this. Most developed and widely used artificial intelligence
paradigms in their basic form perform reasoning without learning. The ability to learn
has to be added.

Machine Learning — general model 1

Another doubt about machine learning might be: if it is not inherently obvious, or
obligatory, then why is it needed, or is it really? If we can program reasoning processes,
and are able to tune them to perfection, then perhaps we can obtain an artificial
intelligence agent, who does not have to learn, or cannot learn anything more.

There is a good answer to this question, and there are several good reasons.

First, the designers of AI cannot anticipate all possible situations that the agent might
find herself in. For example, a robot navigating a maze must learn the layout of each
new maze she encounters.

Second, the designers cannot anticipate all changes over time. A program designed to
predict tomorrow’s stock market prices must learn to adapt when conditions change in
an unpredictable way.

Third, sometimes human programmers have no idea how to program a solution
themselves. For example, most people are good at recognizing the faces of their
acquaintances, but even the best programmers are unable to program the computer to
do this, except by using learning algorithms.

Machine Learning — general model 2

The general model

Performance standard

Agent

E
n

v
iro

n
m

e
n

t

Sensors

Effectors

Performance
 element

changes

knowledge
learning
 goals

 Problem
 generator

feedback

 Learning
 element

Critic

experiments

Machine Learning — general model 3

The elements of a learning agent (from mistakes):

performance element — makes decisions about acting, in a sense it is the whole
intelligent agent sans learning

learning element — watches the effects of the agent’s actions, and makes
corrections in its actions algorithm

critic — evaluates the quality of the agent’s actions, makes use of an external
performance reference

problem generator — necessary if the agent is willing to experiment in order to
discover new possibilities and action techniques; normally, the performance element
would only utilize its abilities to make optimal (in its understanding) decisions, and
would never discover anything new

Obviously, the construction of the learning element is heavily dependent upon the
structure of the performance element, such as the knowledge representation scheme
(eg. state space, rules, predicate logic, probabilistic networks, or other).

Machine Learning — general model 4

General learning schemes

“routine” learning
memorizing and generalizing solutions worked out by the agent in the course of its
actions, in order to apply similar solutions more efficiently to similar problems in the
future

inductive learning
the agent has the ability to watch the phenomenon for some time, eg. the values of
some parameters in a collections of examples, and to build a model of this
phenomenon, which it can later use to answer questions regarding this phenomenon
(including its own questions, posed in the course of working on problems assigned
to it)

“creative” learning
learning scheme not limited to modeling some unknown function, but making it
possible to developing new techniques, algorithms, representation schemes, etc., for
example, learning mathematics to the point of formulating new hypotheses,
constructing its proofs, and also creating new concepts, only loosely related to
those already known

Machine Learning — general types 5

“Routine” learning

Example: action planning

An agent may memorize the operator sequence leading to the solution, hoping that in
case it is ever given the same problem to solve it could reuse the plan.

It can further generalize the plan, for example, substituting parameters for specific
values, and as the result obtaining an action plan scheme, which is a kind of
a macro-operator with easy to determine applicability conditions and effects.

Specific algorithms exist for such generalization of operator sequences. More
sophisticated algorithms may introduce into the generalized plan such elements as
conditions and loops, effectively turning an action plan into a small program.

Machine Learning — general types 6

Inductive learning

supervised (teacher) learning
The agent receives the information in the form of input-output pairs, and learns the
mapping from inputs to outputs.

For example, the agent can obtain from the teacher instructions for her actions for
the current percepts, eg. green light-move, obstacle-stop, etc. In another situation
the agent can learn recognizing patterns in received input data, eg. recognizing
traffic signs in images obtained from a camera. In yet another situation, the agent
may learn the effects of her own actions in different conditions, eg. braking distance
under various road conditions, weather, speed, and the braking force.

After receiving each new training pair (x, y) the agent can both improve her model
of the environment, and verify it, by first trying to predict y by herself.

Machine Learning — general types 7

reinforcement learning
The agent receives from the teacher not the direct pairs of values (x, y), but only
an evaluation of its performance in the form of an occasional reward (or
punishment), called the reinforcement. The agent does not know which of her
actions mostly influenced the reward received, or whether and how she should
update her model of the environment. She must make such decisions based on her
observations and comparing the reinforcements received.

For example, this is the situation of an agent learning to play chess entirely on the
basis of the final game result.

unsupervised learning
In this case the agent does not receive any values of the outputs, or any hints. She
may only observe the sequence of the percepts (observable parameter values) and
learn the patterns contained therein so she can predict future values in the sequence.

This type of learning does not apply to planning the agent’s action, since she
cannot learn what she should do this way, unless she had a state utility function (in
which case it would be the case of reinforcement learning).

Machine Learning — general types 8

Induction learning — the general model

Simplest form: learning an unknown function f(x) from a series of pairs 〈x, f(x)〉.
Example of a set of training pairs: {〈 , 0〉, 〈 , 1〉}.

The problem: from the series of training examples find a hypothesis h ∈ H (H is the
hypothesis space) such, that h ≈ f , ie. the hypothesis h approximates the unknown
function f according to some criterion. In the simplest case the criterion may be
minimizing the number of elements of the training set, for which h(x) 6= f(x).

In practice, the goal of learning is the generalization. We want not just to be able to
correctly classify the elements of the training set, but to capture the principle
according to which they were classified. The ability to learn in this sense depends on:

• the training set, both its cardinality and the specific choice of its members,
• the machine learning algorithm in use,
• the hypothesis space H (which is a derivative of the ML algorithm); if it is too

modest then efficient learning might not be possible.

Machine Learning — general types 9

Induction learning — example

For example, fitting an unknown curve:

x

f(x)

We may consider the following hypotheses:

x

f(x)

x

f(x)

x

f(x)

x

f(x)

The Ockham’s razor principle: from among the hypotheses, which explain a given
phenomenon equally well, choose the simplest one — the one which makes the
minimum additional assumptions.

Machine Learning — general types 10

Decision trees — introduction

We want to automate making preliminary decisions about approving credit applications
by a bank, to make it easier for the bank officers to make the final decisions. We have
the history of the past credit applications — can we learn from them?

f-n l-n age sex income educ. empl. crim. ... approval
- - 30 M 18,000 univ. 2 N ... Y
- - 42 F 12,000 univ. 8 N ... N
- - 46 M 58,000 univ. 14 N ... Y
- - 55 M 22,500 coll. 6 Y ... N
- - 35 M 36,000 univ. 4 N ... Y
- - 22 F 30,000 univ. < 1 N ... N
- - 28 M 25,000 elem. 8 N ... Y

We have a set of records with many attributes, we need to find an algorithm to
determine the value of a designated attribute (approval) based on the values of the
other attributes.

Such an algorithm can be constructed using the concept of a decision tree.

Decision trees — introduction 11

criminal record

✰ q

Y N

N sex

❂ ⑦

F M

N Y

Note:

• Such a tree can always be constructed, unless there exist two vectors with identical
attribute values, with differing credit approval decisions.

• The fact that such a tree could be constructed does not guarantee that it will work
correctly, ie. correctly make the approval decisions. There may be various alternative
such trees, and to select from among them, additional testing data could be
necessary.

• Some attributes should be discarded (like the first or last name).

• Some attributes has specific value sets (like income, or the length of employment),
so what should be done with them? Value ranges perhaps?

Decision trees — introduction 12

Decision trees — principles

• A decision tree can express a binary function represented by any set of examples:
positive and/or negative, as long as it is consistent.

• A trivial construction of a decision tree: subsequent levels correspond to the
attributes, and the tree branches growing at each levels correspond to the specific
values of these attributes. The leaves would correspond to the specific examples
and contain the answers.

• Such construction however only memorizes the set of cases: if an example from the
training set occurs again then it will be correctly found on the tree. However, if an
example not from the training set was given, then the tree would not contain the
answer.

• It would be useful to have a method to construct a decision tree capable of
generalizing the observations, eg. by grouping the examples, like the credit
approval tree above.

Decision trees — principles 13

• We need to note that, in general there exists very many binary functions (22n
for n

attributes), and not all can be generalized by grouping.

For example, the parity function (checking whether the number of cases with
a specific attribute value is even), or the majority function, can only be expressed
with a full, exponentially-sized decision tree, while both can be expressed using
simple formulas.

• So it makes sense to employ the decision trees when they can represent some
concept (given by the set of examples) in a compact, minimal way.

The desired technique for building the decision trees can then construct a minimal
tree correctly classifying the concept.

• Unfortunately, building the strictly minimal decision tree it hard — it requires
building all the trees and choosing one.

• Instead, a heuristic procedure can be used which selects the most important
attributes in turn.

Decision trees — principles 14

Example: whether to wait in a restaurant

Example
Attributes Target

Alt Bar F ri Hun Pat Price Rain Res T ype Est WillWait

X1 T F F T Some $$$ F T French 0–10 T

X2 T F F T Full $ F F Thai 30–60 F

X3 F T F F Some $ F F Burger 0–10 T

X4 T F T T Full $ F F Thai 10–30 T

X5 T F T F Full $$$ F T French >60 F

X6 F T F T Some $$ T T Italian 0–10 T

X7 F T F F None $ T F Burger 0–10 F

X8 F F F T Some $$ T T Thai 0–10 T

X9 F T T F Full $ T F Burger >60 F

X10 T T T T Full $$$ F T Italian 10–30 F

X11 F F F F None $ F F Thai 0–10 F

X12 T T T T Full $ F F Burger 30–60 T

Alternate — whether there is a suitable alternative restaurant nearby
Bar — whether the restaurant has a comfortable bar area to wait in
Fri/Sat — true on Fridays and Saturdays
Hungry — whether we are hungry
Patrons — how many people are in the restaurant (None, Some, or Full)
Price — the restaurant’s price range ($, $$, $$$)
Raining — whether it is raining outside
Reservation — whether we made a reservation
Type — the kind of restaurant (French, Italian, Thai, or burger)
WaitEstimate — the wait estimated by the host (0-10/10-30/30-60/>60m)

Decision trees — restaurant example 15

Example: an „ad-hoc” tree

No Yes

No Yes

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30−60 10−30 0−10

No Yes

Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

WaitEstimate?F T

F T

T

T

F T

TFT

TF

Decision trees — restaurant example 16

Example: a systematic approach

We collect the set of training examples, and “fit” different attributes:

Which attribute is a better candidate for the construction of a decision tree? It seems
that “Patrons”. In two cases it clearly determines the correct result, and in the third
case, although the result is not unambiguous, still one choice has a majority.

However, in the general case the choice will not necessarily be so obvious as above:

Decision trees — restaurant example 17

Information contents

How, then, can the idea of partitioning a dataset into subsets be formalized?

The key concept is the information. It is necessary to determine the answers to the
questions. If initially we do not know the answer to some question, then by learning
the answer we gain information.

The quantity used in the information theory to measure this information gain is the
entropy. The unit used to measure the entropy is the bit. If a random variable has
two possible values (eg. the outcome of a coin flip) with a uniform probability
distribution 〈12, 1

2〉, the entropy of this variable, equal to the information gain from
learning its value, is 1 bit.

However, if the coin was not fair, eg. would come up heads 99% of time, the entropy
would be less. In the extreme, the outcome of flipping a loaded coin, which always
comes up heads, has the entropy of zero (bits), because it does not bring any
information.

Decision trees — entropy 18

The entropy

The entropy of a random variable V with the value set vk is defined as:

H(V) =
∑

k
P (vk) log2

1

P (vk)
= −∑

k
P (vk) log2 P (vk)

In a random selection from the set of n+ positive and n− negative samples, with
a uniform probability distribution, we get the entropy:

H(〈 n+

n+ + n−
,

n−

n+ + n−
〉) = − n+

n+ + n−
log2

n+

n+ + n−
− n−

n+ + n−
log2

n−

n+ + n−

For the 12 samples of the restaurant example we have n+ = n− = 6 and the entropy:

H(〈 6

12
,

6

12
〉) = −1

2
(−1)− 1

2
(−1) = 1

The entropy of an entirely homogenous set of only negative samples n− = 12 is tricky:

H(〈0,
12

12
〉) = −0 · log2 0− 1 · log2 1 = −0 · −∞− 1 · 0 = −0 · −∞ = ?

To make a numerical sense of this quantity we will assume, exclusively for the purposes
of computing entropy, that 0 · ∞ ≡ 0. Thus: H(〈0, 12

12〉) = 0.

Decision trees — entropy 19

Calculating entropies

Calculating entropy requires computing with base 2 logarithms, which is not easy in
memory, and results in ugly irrational numbers. For example, the outcome of flipping
the coin, which comes up heads in 99% cases, has the entropy:

H = −(0.99 log2 0.99 + 0.01 log2 0.01) ≈ 0.08 bits

Here is a useful formula to calculate base 2 logarithms on a calculator which only has
base 10, or natural (base e) logarithms:

logN X =
logM X

logM N

Finally, a reminder of some useful formulas to compute logarithms by hand:
log2 0 = −∞ log2 4 = 2 logN A · B = logN A + logN B

log2 1 = 0 log2 8 = 3 logN A/B = logN A− logN B

log2 2 = 1 log2 16 = 4

This way, logarithms of larger numbers can be computed as a sum of the logarithms of
their factors down to prime numbers. Having a table of some small prime number
logarithms allows an easy calculation of a logarithm of a larger value. For example
having log2 3 ≈ 1.585:

log2 18 = log2(2 · 3 · 3) = log2 2 + 2 · log2 3 ≈ 1 + 2 · 1.585 = 4.17

Decision trees — entropy 20

Building decision trees

We divide a set of samples belonging to a number of classed c1, c2, ...cn into groups
according to some key (feature) and we install these groups as branches of a tree,
whose root is the initial set of samples.

nc
b − the number of samples from class c in branch b

nb − total number of samples in branch b

nt − total number of samples in all branches

The entropy of a single branch can be expressed with the formula:

Hb =
∑

c

nc
b

nb
(− log2

nc
b

nb
)

The total entropy of all the branches resulting from the division of the set of samples
based on the values of some attribute can be computed as:

H =
∑

b

nb

nt
×Hb =

∑

b

nb

nt
× (

∑

c

nc
b

nb
(− log2

nc
b

nb
))

Decision trees — entropy 21

By computing this way the total entropy values for the divisions generated by various
attributes we can determine the attribute which gives the lowest entropy, or maximum
information gain helping to identify the class of a sample. If, after doing this, some
branches of the tree still contain non-uniform (not single class) sets of samples, then
this procedure should be repeated individually for all such branches, eventually building
a complete tree with uniform sample sets in all the leaves.

The tree built using this method is a minimal tree ensuring a classification of a given
set of samples. Learning unknown concepts this way is consistent with the Ockham’s
razor principle, stating that the simplest structure compatible with the observation of
a concept is probably the most correct.

Decision trees — entropy 22

Decision trees — selecting the main attribute: example

Let us compute the entropy of all the attributes for the credit decisions example:

f-n l-n age sex income educ. empl. crim. ... approval
- - 30 M 18,000 univ. 2 N ... Y
- - 42 F 12,000 univ. 8 N ... N
- - 46 M 58,000 univ. 14 N ... Y
- - 55 M 22,500 coll. 6 Y ... N
- - 35 M 36,000 univ. 4 N ... Y
- - 22 F 30,000 univ. < 1 N ... N
- - 28 M 25,000 elem. 8 N ... Y

The entropy of the whole set is −3
7 log2(

3
7)− 4

7 log2(
4
7) ≈ 0.985

Decision trees — entropy 23

The complete set of entropy values for all attributes:

Eage = 4.00/7 = 0.571
Esex = 3.61/7 = 0.516
Eincome = 4.76/7 = 0.680
Eeducat. = 4.85/7 = 0.694
Eemploy. = 6.76/7 = 0.965

Ecrimin. = 5.51/7 = 0.787

The attribute with the lowest entropy is Sex, with entropy of 0.516. This compares to
the initial entropy of the whole set of 0.985, so the information gain of Sex is 0.469.

The initial step of constructing the decision tree is therefore:

Sex

✰ q

F M

N ???

Exercise: determine the next attribute for the branch Sex=M.

Decision trees — entropy 24

Some remarks on the information entropy

The concept of entropy used in the information theory comes from Shannon (1948). In
physics, a slightly different concept of thermodynamic entropy is used, with units of
J/K (joul/kelvin).

In computing entropy, logarithms are used, which corresponds to the length of a string
necessary to encode the given information. Eg. if we combine two systems, each with
a 1000 internal binary states (for simplicity assume it is 1024 binary states), then the
full state of each of these can be described with 10 bits of information. But to encode
the full state of the combined systems (1048576 states), 20 bits are necessary. This
also explains the use of base 2 logarithms.

The entropy and information gain of a single variable can be greater then 1. For
example, if a variable has four possible values, then to encode its value we need 2 bits.
Indeed, computing the entropy of a uniform distribution of this variable we get:

H =
4

∑

i=1
P (vi)(− log2 P (vi)) =

4
∑

i=1
0.25 · (− log2 0.25) = 4 · (0.25 · log2 4) = 2

Decision trees — entropy 25

Decision trees — entropy 26

Errors in data

All inductive learning processes are sensitive to errors in data, to a higher or lower
degree. Such errors include: incorrectly or inaccurately recorded, or entirely missing
attribute values, or incorrectly recorded classification results. These errors can be of
different nature and origins. But in a real production environment, such errors are
unavoidable when processing thousands or hundreds of thousands of samples. Therefore
the sensitivity of the learning process to such errors should always be considered.

Random errors, also known as noise, are inherent in all measurement
processes, are unpredictable and uncontrollable, and typically exhibit high
variance and low bias.

Systematic errors occur in measurement processes due to consistent
errors in hardware or software, incorrect assumptions, methods, parameter
settings, etc. They tend to have low variance and high bias.

In machine learning systematic errors are worse because they can result in producing
models with significant bias. Random errors, on the other hand, tend to cancel each
other out, and many machine learning methods can effectively deal with them,
producing models with low bias and variance.

Errors in data 27

Problems with missing and/or erroneous data

missing values for some attributes in some samples
Many real datasets, recorded over a period of time by humans or electronic sensors,
have some data missing.

To solve this we can eliminate the affected samples, or attribute(s). But either way
we lose data, which may be acceptable, or may not. An alternative approach is to
substitute missing values with artificially generated data. They must be generated
randomly, carefully reproducing the distribution of the specific attribute, scaling the
number of such samples appropriately.

erroneous values for some attributes
There may also be incorrect data present in the dataset. This is worse, since this
may not be obvious, and may lead to suboptimal learning, or even the inability to
learn some datasets.

Such problems can be detected by comparing the learning outcome on different
subsets of data. The „suspicious” samples can be eliminated from the dataset, of
the error values may be eliminated from the affected samples, and replaced as
above.

Errors in data 28

The stopping condition

The original procedure for building a decision tree classifier stops when the set of
samples is uniform in the recursive tree-building process.

However, considering real-life cases, with data errors present, we should extend this
condition. Whenever the data set in the recursive step contains samples with identical
input attribute values, but different class attribute value, the procedure should also
stop. But what should be the classification value returned, when classifying a new
sample with such attribute vector? Clearly, the situation in building the classifier
indicates an error, so one might try to resolve the problem.

If there is a clear majority value in the training subset, then this majority value could
be taken. If there is a significant set of class values with some distribution, the
situation is different. If the classifier being constructed permits the “Undecided”
response, indicating the some other action should be taken, then it is perhaps the most
proper. But if the classifier must be fully automatic, with no human intervention
possible then a possibility might be to draw a random class value using the distribution
of the original subset.

Errors in data — stopping condition 29

The stopping condition continued

The above corrections do not definitely resolve the stopping condition problem. There
might be errors in data without multiple samples with identical x-values and different
y-value. Samples with identical y-values could be differentiated by some insignificant
attribute, or by a small numerical value. Such insignificant attribute, or a numerical
difference, would never make it into the decision tree classifier, if it was not for the
erroneous samples.

To detect, and properly resolve such cases, a more sophisticated stopping condition
might be used. The information gain measure could be used to evaluate whether the
recursive decision tree node should be built, or whether it should be stopped, and the
value computed using the above procedure.

Errors in data — stopping condition 30

The stopping condition (3)

Unfortunately, this also does not always work well. Some difficult cases in classification
result from data patterns which are like the logical “exclusive-OR.” Consider the
following dataset, which results from the (f1 ∧ ¬f2) ∨ (¬f1 ∧ f2) function:

The entropy of the whole data set is 0.92, but the entropies of the splits on all four
attributes are also 0.92. The above stopping condition would make the algorithm stop
growing this tree.

Errors in data — stopping condition 31

If, instead, we decided to make a split on the f1 and then on the f2 attributes, we
would get the following results:

Errors in data — stopping condition 32

Decision tree pruning

As we have seen, it might be useful to proceed building the decision tree even with
little or no information gain. But how to tell this situation apart from overfitting?

An advanced version of the decision tree algorithm grows the tree as far as it is
possible, and upon completion decides whether the result is a useful classifier, or
whether the tree should be pruned and one of the above stopping conditions applied.

Errors in data — stopping condition 33

Errors in data — stopping condition 34

Problems with numerical data

The classification learning algorithms assume each attribute has a finite set of values.
For numerical, or multi-valued parameters, we have problems:

continuous or infinite domains of attributes
Discretization can be used, but the specific ranges of values are often critical. They
can be selected automatically, using statistical analysis, or manually, if we know
what ranges are important for the specific case.

discrete but multi-valued attributes
The groups defined by their values will be relatively small, and therefore often
highly uniform. So they may appear to be useful for classification, while in fact
being worthless. Such cases can be detected by computing the “relative gain” of an
attribute as gain relative to its information contents.

continuous output (class) attribute
In this case we not want to select the output value from a small discrete set, but
compute a numerical value. This is a problem of regression, which is different
from classification. There are different methods to deal with it.

Errors in data — numerical data 35

Errors in data — numerical data 36

Binary decision trees

The previous approach to building decision trees was to discretize the numerical
attributes and treat them as qualitative. An alternative approach is to use only binary
tests of the form xj > c in the branches of the tree.

This will divide the feature space into rectangles, or hyper-rectangles in
high-dimensional space.

Binary decision trees 37

Decision trees with binary splits on numerical attributes

The class of hypotheses allowed in this model is fairly rich, although may not be able
to express some concepts.

Binary decision trees 38

Predicting Bankruptcy

Suppose we are trying to predict some person’s near future bankruptcy by observing
two parameters: number of late credit payments during the year, and the ratio of their
expenses to their income. If these parameters are large, the chances of going bankrupt
are high.

Binary decision trees — the bankruptcy example 39

Considering splits

We want to consider splitting between any two points in each dimension.

Binary decision trees — the bankruptcy example 40

Considering splits (ctd.)

We have quite many possible splits to consider. We are only going to select one, and
this will be the one that minimizes the average entropy of its resulting child nodes.

Binary decision trees — the bankruptcy example 41

Decision tree for the bankruptcy dataset

Computing the average entropies for all possible splits:

Binary decision trees — the bankruptcy example 42

Decision tree for the bankruptcy dataset (ctd.)

The split on L > 1.5 gives the minimum entropy for the first split:

Binary decision trees — the bankruptcy example 43

Decision tree for the bankruptcy dataset (ctd.)

Since all the points satisfying L < 1.5 are in class red (No bankruptcy), then we may
create the leaf in the tree.

Binary decision trees — the bankruptcy example 44

Decision tree for the bankruptcy dataset (ctd.)

We now calculate the second split in the tree. For this all entropies need to be
recalculated, because the leaf samples are taken out of consideration.

Binary decision trees — the bankruptcy example 45

Decision tree for the bankruptcy dataset (ctd.)

In this case the split on R > 0.9 has the least entropy. The tree is extended and the
new leaf created and labeled.

Binary decision trees — the bankruptcy example 46

Decision tree for the bankruptcy dataset (ctd.)

Once again we calculate the complete set of entropies of the remaining samples. For
L > 5 we get the next entropy-minimal split, which also finally separates the output
classes.

Binary decision trees — the bankruptcy example 47

Decision tree for the bankruptcy dataset (ctd.)

The complete tree has zero error on the training set.

Binary decision trees — the bankruptcy example 48

Errors in induction learning

The simplest way to evaluate the results of the learning process is to classify all
samples from some set for which the true class is known, and compute Accuracy:

Accuracy =
of correctly classified samples

of all classified samples

Alternatively, we may compute Error as the complement of Accuracy:

Error = 1− Accuracy

Accuracy may be used to compare the results of learning of the same data by different
learning algorithms. However, it does not tell the whole story, of what has been learned
and what has not.

Efficiency of induction learning — measuring error 49

Problems with Accuracy

The Accuracy is the single measure of the trained classifier’s performance on some
dataset. However, its value may often be hard to interpret or compare.

The absolute value of Accuracy does not have a universal meaning. Accuracy=10%
may be wonderful for picking a ticket in a national lottery. But Accuracy=90% may be
considered low when choosing the antidote for a venomous snake bite.

Accuracy=50% in binary classification is equivalent to random guessing. However, for
a 13-class case the same 50% means that half of the samples will be assigned the
exact, 1-of-13 class. For a specific purpose this might or might not be useful, but it is
a significantly positive result.

Further, consider the screening test for cancer. Suppose five in 1000 people have
a developing disease and it can be detected early by a screening test. Classifier
A correctly identifies 4 of the 5 cancer cases, and incorrectly marks as cancerous 25 out
of 995 healthy people, for the total Accuracy=97.1%. Classifier B only recognizes 2
out of 5 people, and incorrectly classifies 15 healthy people, thus its Accuracy=98.2%
is better than A’s. But its ability to detect cancer is obviously much worse.

Efficiency of induction learning — measuring error 50

Training, validation, and testing sets

Each supervised learning algorithm produces a classifier based on some set of data
called the training set, for which both the input feature values and the class are
known. The classifier can then be evaluated by classifying the samples from the same
training set. Alternatively, it can be tested on samples from another set, called the
testing set, for which both the input features and the class must also be known.

The testing set, however, cannot be examined at any time during learning. By
definition, it can only be used for the final, one-time evaluation of the performance of
a classifier. In an academic setting this set typically is available to the programmer
building the classifier. But in a real-world industrial scenario such set should remain
inaccessible (or rather top-secret), to assure the objectivity of the final test. Otherwise
there might arise a doubt that the manufacturer, in the quest to gain market edge,
might fine tune the classifier for the top performance on the testing set, disregarding
the general data performance.

But while building a classifier, selecting the model and fine tuning its parameters,
multiple testing is required in the iterative build cycle. For that purpose, and additional
testing set is created, called the validating set, different from the training set, but
which can be used in the training, for the evaluation and fine tuning of the classifier.

Efficiency of induction learning — validation and testing 51

Training, validation, and testing sets (ctd.)

Obviously, for a successful construction of a classifier both the training and validation
(and for reliable test also the testing) datasets should have properties most similar to
the real data. This is the reason why samples are randomly selected for randomized
medical therapy trials, social opinion polling, etc.

Likewise, the training and validation datasets should be randomly generated from the
available data. However, each data selection, despite random, is biased, in both mean
value and variance. In other words, the samples of the validation set may be either
particularly easy or particularly hard to classify, or could be altogether different, from
the training set. This distorts the ability to evaluate the objective performance of
a classifier, and may lead to its suboptimal tuning.

To ensure statistical reliability, both sets should be as large as possible, which is easy
to achieve when there is a lot of available data, or there is an unlimited ability to
acquire new data. However, in many cases the available dataset is limited.

Efficiency of induction learning — validation and testing 52

Cross-validation

A simple and powerful method for using a limited dataset for both training and
validation is cross-validation. The available dataset is divided randomly into k equal
subsets (k-folds). Then the first k-1 subsets are used for training, and the last subset
for validation, with the resulting validation error E1. The procedure is repeated k
times, each time using a different subset for validation.

Then the overall cross-validation Error is computed as the average E =
∑

i Ei
k . It

estimates the Error value for any set with properties similar to the available dataset.
The best value for k may be found experimentally for the specific data, but often used
is k=10.

Efficiency of induction learning — validation and testing 53

LOO validation

Cross-validation is the basis for machine learning work. However, for very small dataset
(eg. below 100 samples), and particularly for very small values of k, each of the
validation experiments eg. with k=5 may be based on training with a
non-representative training set. In such cases a special form of validation may be used
called the LOO (Leave-One-Out), or LOOCV (Leave-One-Out Cross-Validation). It
works by selecting in turn each individual sample from the available dataset, and using
it for validation after training with the remaining N -1 samples. The Error is averaged,
like in cross-validation.

Note that LOO validation is equivalent to cross-validation with k=N .

Efficiency of induction learning — validation and testing 54

Errors in learning — overfitting

Overfitting is a common problem in machine learning. It appears in many forms, and
can lead to severely incorrect results. A typical scenario is that a model is trained, and
appears to work successfully, when tested on the training set. However, when tested on
a different dataset (testing set) the results are much worse, or completely unacceptable.

One possibility is, that some very regular pattern is learned from a limited dataset, and
the resulting model is perturbed by some particular phenomena, such as outliers
(individual highly irregular samples) or randomness (eg. a subset exhibiting similar,
very specific, but not typical, properties).

Another possibility is that the model is trained to adapt to the dataset so accurately,
that it reflects not only regular properties, but also the noise contained in the dataset.
This is particularly likely when using very advanced machine learning algorithms
capable of producing very complex and highly flexible models.

In this example it appears, that the black line fits the
data well, but the continued training can lead to the
green line, as it exhibits zero error on the training set.

Efficiency of induction learning — overfitting and underfitting 55

Errors in learning — underfitting

Much larger error values on the test data than on the training data do not always
indicate overfitting, however. In general, the larger the training set, relative to the
number of input attributes and the size of the hypothesis space, the lower is the
danger of overfitting. Large errors on the test set may also result from underfitting,
which may be due to a too small training set, or a too simple model, inadequate
machine learning algorithm, insufficient learning, etc.

S1

S2

S3
S4

S5

S6S7

Learning the points S1,...,S4 might lead to the
red continuous curve. The validation/test points
S5,S6,S7 exhibit large errors, but in this case this
is due to underfitting. Repeated learning with
these points has lead to the green broken line.

Determining whether errors obtained in testing result from overfitting or underfitting,
or perhaps something else, is a difficult problem in machine learning, and often requires
running many experiments.

Efficiency of induction learning — overfitting and underfitting 56

Errors in learning — detecting overfitting

Many approaches have been developed in machine learning to combat overfitting.
Some of them are specific to, and/or built into a particular ML algorithm, while others
are generic and can be used universally. We will learn a number of these.

A simple and very often effective approach is to aquire more good quality data. As we
have seen, one of the facets of overfitting, is a biased model obtained on a noisy
dataset. With a larger dataset, even with the same noise present, many ML algorithms
will be able to produce a better quality models, as in a large set the noise will often
have a tendency to cancel out.

Another general approach to avoid overfitting is the early stopping method.

It works by iteratively improving the trained model,
while observing its performance by comparing the error
calculated on the training set and a separate validation
set. Each round of classifier optimization makes both
errors to go down. It is natural and expected for the
validation error to be slightly larger, but also decreasing,
following the training set error. However, if and when
the validation error stops dropping and starts growing,
while the training set error continues to drop, it suggests
that overfitting has occurred.

Efficiency of induction learning — detecting overfitting 57

Training and validation

Because testing can be used to detect over- and underfitting, and indicate that more
training (on more data) is required, the traditional division of data into the training
and testing sets is not always adequate. Testing not only serves the purpose of final
assessment of the classifier’s performance, but also helps in the construction of the
classifier.

This can be either done by cross-validation (especially if the available data are few), or
by the following data window approach (useful when there is plenty of data). We
may use only a small fraction of data for training, and use the rest for validation.

training validation error
retr. validation error

retr. val. error
retr. validation

In case the validation ever fails, the learning is repeated for the training set with the
addition of samples giving errors. After that, validation is resumed on the remaining
data. This leads to splitting the data into: training, validation, and testing sets, with
the latter only used for the final evaluation.

Efficiency of induction learning — detecting overfitting 58

The Naive Bayes Classifier

We will introduce one of the most interesting methods of machine learning, one of the
simplest and very efficient, the Naive Bayes Classifier, by studying and example. For
the set of samples we compute the following fractions for each of the features:

X1X2X3X4 Y

0 1 1 0 1

0 0 1 1 1

1 0 1 0 1

0 0 1 1 1

0 0 0 0 1

1 0 0 1 0

1 1 0 1 0

1 0 0 0 0

1 1 0 1 0

1 0 1 1 0

R1(1, 1) = 1/5 - fraction of all

positive samples, that have X1 = 1

R1(0, 1) = 4/5 - fraction of all

positive samples, that have X1 = 0

R1(1, 0) = 5/5 - fraction of all

negative samples, that have X1 = 1

R1(0, 0) = 0/5 - fraction of all

negative samples, that have X1 = 0

R1(1, 1) = 1/5 R1(0, 1) = 4/5

R1(1, 0) = 5/5 R1(0, 0) = 0/5

R2(1, 1) = 1/5 R2(0, 1) = 4/5

R2(1, 0) = 2/5 R2(0, 0) = 3/5

R3(1, 1) = 4/5 R3(0, 1) = 1/5

R3(1, 0) = 1/5 R3(0, 0) = 4/5

R4(1, 1) = 2/5 R4(0, 1) = 3/5

R4(1, 0) = 4/5 R4(0, 0) = 1/5

The computed fractions correspond to the probabilities of a sample with the specific
class value having the specific feature value.

Naive Bayes Classifier — introduction 59

R1(1, 1) = 1/5 R2(1, 1) = 1/5 R3(1, 1) = 4/5 R4(1, 1) = 2/5
R1(1, 0) = 5/5 R2(1, 0) = 2/5 R3(1, 0) = 1/5 R4(1, 0) = 4/5
R1(0, 1) = 4/5 R2(0, 1) = 4/5 R3(0, 1) = 1/5 R4(0, 1) = 3/5
R1(0, 0) = 0/5 R2(0, 0) = 3/5 R3(0, 0) = 4/5 R4(0, 0) = 1/5

When we need to predict the class value of a new sample, we look at its feature values,
and compute the probabilities of having each subsequent class value by multiplying the
probabilities of having the specific feature value with that class value.

Additionally, we include the primary probabilities of all class values, eg.:

new X = 〈0, 0, 1, 1〉
S(1) = P (1) ∗R1(0, 1) ∗ R2(0, 1) ∗R3(1, 1) ∗R4(1, 1) = 0.1024

S(0) = P (0) ∗R1(0, 0) ∗ R2(0, 0) ∗R3(1, 0) ∗R4(1, 0) = 0

Since here S(1) > S(0) then we declare the class of the new sample as 1.

Naive Bayes Classifier — introduction 60

More formally, we compute the following quantities Rj for each feature Xj by
counting samples i with the specific values of X i

j and Y i:

Rj(1, 1) =
#(X i

j = 1 ∧ Y i = 1)

#(Y i = 1)

Rj(0, 1) = 1−Rj(1, 1)

Rj(1, 0) =
#(X i

j = 1 ∧ Y i = 0)

#(Y i = 0)

Rj(0, 0) = 1−Rj(1, 0)

Naive Bayes Classifier — introduction 61

Given a new sample Xk, we compute:

S(1) = P (1) ∗ ∏

j
Rj(X

k
j , 1)

S(0) = P (0) ∗ ∏

j
Rj(X

k
j , 0)

Output 1 iff S(1) > S(0)

The operation of the classifier might be sped up using logarithms, since it is easier to
add, than to multiply small numbers. Computing the logarithms occurs only once
during the construction of the classifier.

log S(1) = log P (1) +
∑

j
log Rj(X

k
j , 1)

log S(0) = log P (0) +
∑

j
log Rj(X

k
j , 0)

And output 1 iff log S(1) > log S(0)

Naive Bayes Classifier — introduction 62

The Laplace corrections

The above scheme works well, except in case when for one of the features there are no
samples (zero) with a specific feature and class values. The corresponding Rj factor is
0 then, and such class will never be predicted for that feature value, regardless of other
features.

This can be avoided by adding a small numerical quantity l to each sample count (in
the numerator of the Rj expression). In order to normalize the resulting probabilities,
each Rj denominator is correspondingly incremented by 2l. This operation is called
smoothingof the estimate, and the value l is the strength of this smooting. The
frequently used l=1 case is called the Laplace smooting.

Rj(1, 1) =
#(X i

j = 1 ∧ Y i = 1) + 1

#(Y i = 1) + 2

Rj(0, 1) = 1−Rj(1, 1)

Rj(1, 0) =
#(X i

j = 1 ∧ Y i = 0) + 1

#(Y i = 0) + 2

Rj(0, 0) = 1−Rj(1, 0)

Naive Bayes Classifier — Laplace corrections 63

X1 X2 X3 X4 Y
0 1 1 0 1
0 0 1 1 1
1 0 1 0 1
0 0 1 1 1
0 0 0 0 1
1 0 0 1 0
1 1 0 1 0
1 0 0 0 0
1 1 0 1 0
1 0 1 1 0

R1(1, 1) = 2/7 R1(0, 1) = 5/7
R1(1, 0) = 6/7 R1(0, 0) = 1/7

R2(1, 1) = 2/7 R2(0, 1) = 5/7
R2(1, 0) = 3/7 R2(0, 0) = 4/7

R3(1, 1) = 5/7 R3(0, 1) = 2/7
R3(1, 0) = 2/7 R3(0, 0) = 5/7

R4(1, 1) = 3/7 R4(0, 1) = 4/7
R4(1, 0) = 5/7 R4(0, 0) = 2/7

Naive Bayes Classifier — Laplace corrections 64

The Naive Bayes Classifier — the theory

Let us try to come up with a semi-formal justification for the above procedure. We
may consider the features X1, . . . , Xn to be random variables. We try to learn from
the series of samples the P (Y = 1|X1, . . . , Xn). Then, given a new sample, we use
the learned distribution to compute the probability it has the Y value 1. If that
probability is > 0.5, we will answer 1, otherwise 0.

So we need to estimate the distribution P (Y = 1|X1, . . . , Xn) from the training data.
In the Naive Bayes Classifier method we do this using the Bayes’ rule.

Naive Bayes Classifier — theory 65

The naive assumption

In general, the Bayes rule is:

P (A|B) = P (B|A)
P (A)

P (B)

Specifically, with n features:

P (Y = 1|X1...Xn) = P (X1...Xn|Y = 1)
P (Y = 1)

P (X1...Xn)

The term P (X1...Xn) is characteristic of the data set, and for a given sample is
constant. For the purpose of the sample class determination we need to focus on:

P (Y = 1) ∗ P (X1...Xn|Y = 1)

Assuming that the features are all independent, we can compute this as:

P (X1, ...Xn|Y = 1) =
∏

j
P (Xj|Y = 1)

Such assumption is very often false, yet this method works well in many domains.
This is why the classifier is called Naive.

Naive Bayes Classifier — theory 66

Logistic Regression: introduction

Logistic Regression is a form of classification. It is an approach to learn a function
of the form f : X → Y , or P (Y |X) in the case where Y is discrete-valued, and
X = 〈X1...Xn〉 is a vector containing discrete or continuous variables.

The logistic function is used to model the probability distribution. The “S” shape of
the function is also called the sigmoid curve. It is given by the following equation:

f(x) =
L

1 + e−k(x−x0)

where: x0 is the x-value of the
sigmoid’s midpoint, L is the
curve’s maximum value, and k =
the steepness of the curve.

$ gnuplot

set grid ytics lt 0 lw 1 lc rgb "#444444"

set grid xtics lt 0 lw 1 lc rgb "#444444"

set ytics .25

plot 1/(1+exp(-x))
 0

 0.25

 0.5

 0.75

 1

-10 -5 0 5 10

1/(1+exp(-x))

Logistic regression 67

Logistic Regression: example

Consider the following example (Wikipedia): A group of 20 students spent between
0 and 6 hours studying for an exam; then some have passed and some have failed.

What is the probability of passing the exam given the hours studied?

hours pass hours pass
0.50 n 2.75 t
0.75 n 3.00 n
1.00 n 3.25 t
1.25 n 3.50 n
1.50 n 4.00 t
1.75 n 4.25 t
1.75 t 4.50 t
2.00 n 4.75 t
2.25 t 5.00 t
2.50 n 5.50 t

Logistic regression 68

Logistic Regression: theory

First we will consider the case where Y is a boolean variable, for simplicity. Later we
will extend the presentation to the multi-valued discrete case.

Logistic Regression assumes the following parametric form for the distribution
P (Y |X):

P (Y = 1|X) =
1

1 + exp(w0 + ∑n
i=1 wiXi)

P (Y = 0|X) =
exp(w0 + ∑n

i=1 wiXi)

1 + exp(w0 + ∑n
i=1 wiXi)

The parameters wi will be learned from the training data.

Logistic regression 69

Logistic Regression: theory (2)

Since the result of the learned logistic function is to be used for classification, we only
need to be concerned with the following condition:

P (Y = 0|X)

P (Y = 1|X)
> 1

If the condition holds, then we will assign Y = 0. After substituting the general
parametric formulas the above condition becomes:

exp(w0 +
n

∑

i=1
wiXi) > 1

and after taking a natural logarithm from both sides becomes:

w0 +
n

∑

i=1
wiXi > 0

Logistic regression 70

Logistic Regression: learning the parameters

One reasonable approach to choose the Logistic Regression parameter values that
maximize the conditional likelihood of the training data. The conditional data
likelihood is the probability of the observed Y values in the training data, conditioned
on their corresponding X values. So we choose parameters W that satisfy:

W ← arg max
W

∏

s
P (Y s|Xs, W)

where W = 〈w0, w1...wn〉 is the vector of parameters to be estimated, and Y s, Xs

denote the observed value of Y, X in the sth training sample. The expression to the
right of the arg max is the conditional data likelihood. W is included in the conditional
to emphasize that the expression is a function of the W we are attempting to
maximize.

Equivalently, we can work with the log of the conditional likelihood:

W ← arg max
W

∑

s
ln P (Y s|Xs, W)

Logistic regression 71

Logistic Regression: learning the parameters (2)

This conditional data log likelihood ∑

s ln P (Y s|Xs, W), which we will denote l(W),
can be written as

l(W) =
∑

s
Y s ln P (Y = 1|Xs, W) + (1− Y s) ln P (Y s = 0|Xs, W)

since Y s can take only values 0 or 1, only one of the two terms in the expression will
be non-zero for any given Y s. This can be rewritten to:

l(W) =
∑

s
Y s ln

P (Y s = 1|Xs, W)

P (Y s = 0|Xs, W)
+ ln P (Y s = 0|Xs, W)

and by plugging in the parametric formulas for P to:

l(W) =
∑

s
Y s(w0 +

n
∑

i
wiX

s
i)− ln(1 + exp(w0 +

n
∑

i
wiX

s
i))

Logistic regression 72

Logistic Regression: learning the parameters (3)

Unfortunately, there is no closed form solution maximizing l(W) with respect to W .
Fortunately, the l(W) function is concave with respect to W . Therefore, a natural
approach is to use the gradient ascent search in the space of partial derivatives of
l(W). The ith component of the vector gradient has the form:

∂l(W)

∂wi
=

∑

s
Xs

i (Y s − P̂ (Y s = 1|Xs, W))

where P̂ (Y s|Xs, W) is the Logistic Regression prediction of the probability. To
accommodate weight w0, we assume an imaginary X0 = 1 for all s.

This expression for the derivative has an intuitive interpretation: the term inside the
parentheses is simply the prediction error; that is, the difference between the observed
Y s and its predicted probability! Note if Y s = 1 then we wish for P̂ (Y s = 1|Xs, W)
to be 1, whereas if Y s = 0 then we prefer that P̂ (Y s = 1|Xs, W) be 0 (which makes
P̂ (Y s = 0|Xs, W) equal to 1). This error term is multiplied by the value of Xi, which
accounts for the magnitude of the wiXi term in making this prediction.

Logistic regression 73

Logistic Regression: learning the parameters (4)

To conduct the standard gradient ascent search to optimize the weights W , we may
begin with initial weights of zero, and repeatedly update the weights in the direction of
the gradient, on each iteration changing every weight wi according to:

wi ← wi + η
∑

s
Xs

i (Y s − P̂ (Y s = 1|Xs, W))

where η is a small constant (e.g., 0.01) which determines the step size. Because the
conditional log likelihood l(W) is a concave function in W , this gradient ascent
procedure will converge to a global maximum.

Logistic regression 74

Logistic Regression: Regularization

Regularization is the technique used in many statistical algorithms do combat
overfitting, which is possible especially with high-dimensional but sparse data.
Regularization works by introducing an additional term in the formulas to penalize
large values of W , on the assumption that large coefficients appear in highly overfitted
functions. One possible approach is to penalize the log likelihood function:

W ← arg max
W

∑

s
ln P (Y s|Xs, W)− λ

2
|W |2

by adding a penalty proportional to the squared magnitude of W . λ determines the
strength of this penalty term. Maximizing this goal corresponds to calculating the
MAP (Maximum A Posteriori) estimate for W under the assumption of a normal
(Gaussian) distribution for P (W) with a zero mean and variance (σ2) related to 1

λ.

It is not hard to derive the following gradient ascent update rule, similar to the case
with no regularization:

wi← wi + η
∑

s
Xs

i (Y s − P̂ (Y s = 1|Xs, W))− ηλwi

Logistic regression 75

Logistic Regression: Regularization(2)

The above procedure uses the normal (Gaussian) model for the distribution P (W),
which leads to a so-called L2 regularization. It tries to minimize the square norm
|W |2.

Another way to regularize is the L1 regularization, which minimizes |W |.

Logistic regression 76

Logistic Regression: multivalued functions

In the case of a multivalued function where Y has a number of discrete values
y1, ..., yK, the form of P (Y = yk|X) for Y = y1, Y = y2, ..., Y = yK−1 is:

P (Y = yk|X) =
exp(wk0 + ∑n

i=1 wkiXi)

1 + ∑K−1
j=1 exp(wj0 + ∑n

i=1 wjiXi)

and for the final Y = yK:

P (Y = yK|X) =
1

1 + ∑K−1
j=1 exp(wj0 + ∑n

i=1 wjiXi)

Here wji denotes the weight associated with the jth class Y = yj and with input Xi.
It is easy to see that our earlier expressions for the case where Y is boolean are a
special case of the above expressions. Note also that the form of the expression for
P (Y = yK|X) assures that [∑K

k=1 P (Y = yk|X)] = 1.

The primary difference between these expressions and those for boolean Y is that
when Y takes on K possible values, we construct K − 1 different linear expressions to
capture the distributions for the different values of Y . The distribution for the final,
Kth, value of Y is simply one minus the probabilities of the first K − 1 values.

Logistic regression 77

Logistic Regression: multivalued functions (2)

In the case of a multivalued function, the gradient ascent rule becomes:

wji← wji + η
∑

s
Xs

i (δ(Y s = yj)− P̂ (Y s = yj|Xs, W))

where δ(Y s = yj) = 1 if the sth training value, Y s, is equal to yj, and δ(Y s = yj) = 0
otherwise. Note our earlier learning rule is a special case of this new learning rule,
when K = 2. As in the case for K = 2, the quantity inside the parentheses can be
viewed as an error term which goes to zero if the estimated conditional probability
P (Y s = yj|Xs, W)) perfectly matches the observed value of Y s.

With regularization the above formula changes to:

wji ← wji + η
∑

s
Xs

i (δ(Y s = yj)− P̂ (Y s = yj|Xs, W))− ηλwji

Logistic regression 78

The Confusion Matrix

We have seen that Accuracy/Error can be the single basic learning efficiency metric.
We have also seen how they do not give a complete view of the performance of the
trained classifier.

It is desirable to have a reliable measure of the classification performance.
Unfortunately, no single statistical error measure is universally accepted. Therefore,
a number of such measures are defined and are in use. Most of them can be computed
from the structure called the confusion matrix representing the number of samples
from each class classified as each other class. In the general case it has the form:

classified as class:
1 2 ... m

true class: 1 N1,1 N1,2 ... N1,m

true class: 2 N2,1 N2,2 ... N2,m

...
true class: m Nm,1 Nm,2 ... Nm,m

We can see that: Accuracy =
∑

i Ni,i
∑

i
∑

j Ni,j

Errors in machine learning — the confusion matrix 79

The Confusion Matrix for Binary Case

In the binary classification case, the classifier should simply select the „positive”
samples, and leave out the negatives. The following terminology is used:

TP (true positives) = N1,1

TN (true negatives) = N0,0

FN (false negatives) = N1,0

FP (false positives) = N0,1

classified as:
class 0 class 1

true class 0 TN FP
true class 1 FN TP

We can see that:

Accuracy =
TP + TN

TP + TN + FP + FN

Errors in machine learning — the confusion matrix 80

Precision and Recall

The Precision is the error measure originating from the binary classification and
expressing the fraction of examples indicated by the classifier as positive, which are
indeed positive. The Recall is the fraction of positive examples which are recognized
as such by the classifier.

FN

TP

Selected

Target TN

FP

Precision =
TP

TP+FP

Recall =
TP

TP+FN

A typical compromise between Precision and Recall is that trying to maximize one
might result in reducing the other, and vice versa. Consider a brain surgeon removing
a cancerous tumor from a patient’s brain (an example from Wikipedia). He needs to
remove all of the tumor since any remaining cancer cells will regenerate the tumor.
However, he must not remove healthy tissue since that might leave the patient
impaired. Removing more liberally, the surgeon increases recall but reduces precision.
Proceeding more conservatively, he increases precision, but reduces recall.

Errors in machine learning — Precision and Recall 81

Precision and Recall (cntd.)

Note that the Precision and Recall are computed just for the class of positive samples;
it describes the process of selecting some examples from the population. If the
selection of negative examples are equally important, we may compute the Precision
and Recall for the negative class.

In the general multiple class case there are separate Precision or Recall for each class:

Precision(C) =
NC,C

∑

i Ni,C
Recall(C) =

NC,C
∑

i NC,i

A classification Precision score of 1.0 for class C means that every item classified as
class C does indeed belong to class C, but says nothing about members of class C that
were not classified correctly.

A Recall of 1.0 for class C means that all its members have been correctly classified as
C, but says nothing about how many other items were incorrectly also labeled as
belonging to class C.

We can compute average Precision or Recall weighted by class membership.

Errors in machine learning — Precision and Recall 82

The κ̂ (Kappa) statistic

The Kappa parameter is referred to as the interrater agreement. It reflects the
agreement between two ways of classifying objects. In fact, it provides a measure how
much better the agreement between two classifiers is than random. The formula:

κ̂ =
NT ∑

i Ni,i − ∑

i(NRi ×NCi)

NT 2 − ∑

i(NRi ×NCi)

where:

NT =
∑

i

∑

j
Ni,j (total samples)

NRi =
∑

j
Ni,j (total samples per row i)

NCi =
∑

j
Nj,i (total samples per column i)

The value of Kappa may range from -1 to 1, but for positive correlation it is > 0.
Values above 0.5 indicate a significantly correct classification.

Also in use is a weighted version of Kappa with weights selected for each class.

Errors in machine learning — the κ̂ (Kappa) statistic 83

Errors in machine learning — the κ̂ (Kappa) statistic 84

Neighborhood in the feature space

In general, having many historical points in the feature space, and the new point with
an unknown class, we may examine its neighborhood in the space.

Then we locate the nearest neighbor of the new point, and use its class for the new
point. This is the nearest neighbor algorithm.

Nearest neighbors 85

Computing distance in the feature space

A good question is how we measure the „nearest”. We need a distance metric for
features. It is typical to use the Euclidean distance:

D(xi, xk) =
√

√

√

√

√

∑

j
(xij − xkj)

2

However, the dimensions of the feature space correspond to different features, which
may be different quantities, expressed in different units, perhaps of different orders of
magnitude.

Nearest neighbors — computing distance 86

Scaling the inputs

To bring the different feature space dimensions to be comparable, scaling may be used.
One typical approach is to compute the mean value x, and standard deviation σx of
each input feature x, and then rescale such feature x as:

x′ =
x− x

σx

This universal form of scaling is called normalization. Instead, one may use some
other scaling scheme, for example to boost the influence of some feature relative to
others. This can be obtained experimentally, by the gradient descent (hill-climbing)
procedure with cross-validation, to get the feature weight vector which performs best
on some specific data set.

Nearest neighbors — computing distance 87

The Bankruptcy example again

Suppose some such procedure has been performed for the bankruptcy data set
considered earlier, and the result was that the R feature (rate of spending versus
income) should be scaled by 5, relative to L (number of late monthly payments in
a year).

D(xi, xk) =
√

(Lxi − Lxk
)2 + (5Rxi − 5Rxk

)2

(This roughly corresponds to the scale of the axes in the image below.)

Suppose now there is
a new person to classify
with R = 0.3 and L = 2.

What class value should
we predict?

Nearest neighbors — bankruptcy example 88

The Bankruptcy example continued

We may compute the nearest neighbor ...

... and conclude that the new person’s class should be red (No bankruptcy).

Nearest neighbors — bankruptcy example 89

And likewise for another new sample:

Nearest neighbors — bankruptcy example 90

The nearest neighbor classification hypothesis

The nearest neighbor algorithm outlined here effectively divides the feature space into
regions:

The diagram dividing the (two-dimensional) space with line segments equi-distant from
the set of points is called a Voronoi diagram.

Nearest neighbors — Voronoi tessellation 91

Time and Space

Remembering all the samples from the dataset, which may be huge, and then
calculating the distance from all these points for any new sample, may be intensive.
A clever data structure (K-D tree) allows the calculations to be fast, on the average
O(log(m) ∗ n) with n features and m samples in the training set. Training samples far
from the boundary lines (or k-surfaces) can also be forgotten, reducing the memory
consumption.

Nearest neighbors — Voronoi tessellation 92

Noise

When the training dataset is reliable, the boundary between the two output classes are
clear. However, problems arise when a person with good financial parameters had gone
bankrupt.

Such point may be treated in two ways: either being strictly observed, and allowed to
affect future classification, or treated as an unusual case, which should be ignored.
However, in a real dataset, with many features and many values, we may not be able
to spot such such training set members.

Nearest neighbors — noise 93

Noise — classifying a new sample

The standard nearest neighbor algorithm may classify the new point based on the
„noise” training sample.

Nearest neighbors — noise 94

k-Nearest Neighbors algorithm

The simple extension of the algorithm takes into account some number k of nearest
points, and use the class of the majority of the elements.

With larger k values the classifier becomes more robust and resistant to noise, but less
precise. The optimal k values can be determined experimentally using cross-validation.
For obvious practical reasons, it makes sense to use odd k values: 3, 5, 7, 9, ...

Nearest neighbors — k-NN 95

Nearest neighbors — k-NN 96

The curse of dimensionality

The nearest neighbor algorithm works very well and is one of the most powerful
classification machine learning algorithms.

A limiting factor for it are the very high dimensional feature spaces. In high
dimensions, almost all points are far apart, if not under one then under another
dimension. This is called the curse of dimensionality, a phenomenon often seen in
machine learning work.

The curse of dimensionality can be illustrated as following. Assume the D-dimensional
space is a unit cube with uniformly distributed training samples. To classify a sample
we uniformly grow a hyper-cube around it until it contains a desired fraction p of the
training set. The expected edge length of this cube will be eD(p) = p1/D.

For D=10 and p=1% we have e10(0.01) = 0.63, with the unit cube. This means that
the nearest neighbor method is not really local, since it requires consulting so distant
neighbors (practically in the other half of the hyper-cube). Such points may not be
good predictors for the class of the point being classified.

Nearest neighbors — the curse of dimensionality 97

The curse of dimensionality — dimension reduction

Because of this, it is often desirable to reduce the dimensionality of the space, by
feature reduction. This may seem counter-productive, since the many features may
carry important information about the samples. However, this is in line with the
Ockham’s razor principle: if the shorter feature vector works equally well (or almost),
then we should use it. It will give faster learning, more robust classification, and permit
easier visualization or interpretation of the classification process.

Nearest neighbors — the curse of dimensionality 98

Ensemble Learning

The classification machine learning algorithms presented so far produced a single
model for making predictions for the class of any new data samples. They could be
optimized to obtain the best performance using various criteria.

Then systematic empirical comparisons showed that the best learning algorithm varies
from application to application. Therefore it makes sense to try several (many)
approaches for any new machine learning project. Initially, effort went into trying many
variations of many algorithms, and still selecting just the best one.

But more recently it was observed that, if instead of selecting the single best variation
found, it is better to combine many variations, and use the combination of their results
by: averaging, voting, or by another level of machine learning.

This approach is called ensemble learning. There are some variants of it, which we
will now examine.

Ensemble learning 99

Ensemble Learning — Bagging

Bagging, also called bootstrap aggregating, generates multiple (K) random
variations of the training set by resampling (duplicating and dropping random
samples), trains a classifier on each, and combines the results by voting.

Bagging often significantly reduces variance, especially on a noisy or limited dataset. It
also works well when the base model is found to be overfitting. While at the same time
the bias can rise, this is usually limited.

Bagging can be used with any base learning model, but is most commonly used with
decision trees. This is because this model is inherently unstable: a slightly different set
of examples can lead to a completely different decision tree. Bagging smoothes out the
variance which can appear.

Another advantage of this approach is that bagging can be easy to run in parallel on
many computers.

Ensemble learning — bagging 100

Ensemble Learning — Random Forest

Often the result of using bagging with decision trees results in K trees that are highly
correlated. This happens because an attribute with a very high information gain is
likely to become the root of most of the trees.

Therefore special techniques can be applied to make the K trees more diverse, to
reduce variance. This approach is called the random forest.

The key idea of random forest is to vary the attribute choices. In selecting the root
attribute (and also at each split point in recursive construction of the tree), we do not
consider all of the attributes, but a selected subset. One rule is to select

√
n from n

attributes for the classification problems, and n/3 for regression problems.

Unlike the basic decision trees, which are prone to overfitting, and require pruning,
random forests are often used unpruned, and yet they are resistant to overfitting. As
the number of trees in the forest grows, the validation-set error rates tend to improve.
There is also a theoretical proof for this effect for almost all cases.

Random forests are one of the most popular algorithm applied to a wide variety of
application domains.

Ensemble learning — random forest 101

Ensemble Learning — Stacking

In stacking, multiple classifiers are generated, just like in bagging, and the outputs of
individual classifiers become the inputs of a “higher-level” classifier trained to make
a final prediction.

Whereas bagging aggregates the “votes” of base classifiers — which all represent the
same machine learning algorithm — by simple majority counting, here the final
decision can be learned based on the full input data vectors, augmented with the
classification results from the base classifiers. It makes therefore sense to utilize
different machine learning algorithms for them, since the upper level algorithm will
have to learn to use them anyway.

The logistic regression model is often used for the upper level in stacking, although it
can be any classification algorithm, either used in the base level as well, or not.

The term “stacking” reflects the scheme of putting the ensemble model on top of the
layer of base models. It is even possible to stack multiple layers, each subsequent one
operating on the output of the previous layer.

Ensemble learning — stacking 102

Ensemble Learning — Boosting

The most popular ensemble learning method is called boosting. In boosting, the
classifiers are generated sequentially, and the training samples have weights, initially all
equal. After training the first classifier, call it hypothesis h1, the data samples classified
by it incorrectly have their weights increased, while those classified correctly have them
decreased.

Using this modified training set, the new hypothesis h2 is generated. The process
continues to generate K hypotheses, where K is a parameter to the boosting
algorithm. The examples that are difficult to classify will get increasingly larger weights,
until the algorithm is forced to generate a hypothesis which classifies them correctly.

Boosting is a greedy algorithm, as it does not backtrack. Even if it ever generates
a hypothesis which is worse than the previous one, the algorithm only goes forward,
trying to fix it.

The final ensemble uses all generated hypotheses in a weighted voting system, with the
weights increasing for the hypothesis which obtained better results on their weighted
training set.

It works well particularly in situations when the generated classifiers exhibit low
variance and high bias.

Ensemble learning — boosting 103

Below is the illustration of the boosting process. Each shaded rectangle corresponds to
a data sample, with its height reflecting its weight. The checks and crosses indicated
whether the sample was classified correctly by the current hypothesis. The size of the
decision tree indicates the weight of that hypothesis in the final ensemble.

Ensemble learning — boosting 104

Ensemble Learning — AdaBoost

The AdaBoost algorithm was one of the first examples of this approach, and remains
very popular. AdaBoost is usually applied with decision trees as base models.

A very important property of AdaBoost is that even if the base learning algorithm
performs only marginally better than random guessing (eg. 50% + ǫ in the binary
classification case), then AdaBoost generates the ensemble that classifies the training
data perfectly, for large enough K.

In other words, boosting can overcome any amount of bias in the base model, as long
as this model is ǫ better than random guessing.

Ensemble learning — AdaBoost 105

Ensemble Learning — Gradient Boosting

Another variant of boosting is called gradient boosting. Unlike original boosting, in
which we pay increasingly more attention to the examples which the previous
hypothesis got wrong, in gradient boosting we generate new hypotheses based on the
gradient between the right answers and the answers given by the previous hypotheses.

Just as is done in other algorithms based on gradient descent, we start by
a differentiable loos function, such as logarithmic loss for classification, or squared
error for regression. We then build a decision tree and use gradient descent to update
the parameters to build the next one.

Ensemble learning — gradient boosting 106

Summary: classification machine learning

The machine learning methods presented so far allow creating classifiers. A classifier is
a system that inputs a vector of discrete and/or continuous feature values and outputs
a single discrete value, the class. The learning algorithm inputs a training set of
examples, and produces a classifier. The test of the learner is whether this classifier
gives the correct output for future examples.

Learning algorithms consists of combinations of just three components:

Representation: choosing the set of classifiers that it can possibly learn. This set is
called the hypothesis space of the learner. If a classifier is not in the hypothesis
space, it cannot be learned.

Evaluation: An evaluation function (also called objective function or scoring
function) is needed to distinguish good classifiers from bad ones. The evaluation
function used internally by the algorithm may differ from the external one that we
want the classifier to optimize.

Optimization: a method to search among the classifiers for the highest-scoring one.
The choice of optimization technique is key to the efficiency of the learner.

Classification machine learning — wrap-up 107

Learning = Representation + Evaluation + Optimization

Representation Evaluation Optimization
Instances

K-nearest neighbors
Support vector machines

Hyperplanes
Naive Bayes
Logistic regression

Decision trees
Sets of rules

Propositional rules
Logic programs

Neural networks
Graphical models

Bayesian networks
Condition.random fields

Accuracy/Error rate
Precision and recall
Squared error
Likelihood
Posterior probability
Information gain
K-L divergence
Cost/Utility
Margin

Combinatorial optimization
Greedy search
Beam search
Branch-and-bound

Continuous optimization
Unconstrained

Gradient descent
Conjugate gradient
Quasi-Newton methods

Constrained
Linear programming
Quadratic programming

Not all combinations of one component from each column make equal sense. For
example, discrete representations naturally go with combinatorial optimization, and
continuous ones with continuous optimization. Nevertheless, many learners have both
discrete and continuous components.

Classification machine learning — wrap-up 108

It’s generalization that counts

The key idea of machine learning is generalization. No matter how much data is
available to the program developer, the program will likely have to operate on still
different data.

Think: for 100,000 words in a dictionary, the hypothetical spam classifier may face
2100,000 different inputs.

Because machine learning algorithms have many parameters by which optimization can
be achieved, it is important to separate training and testing data, so that the results of
this fine-tuning are not evaluated on the training data.

So it is normal in machine learning, that we are optimizing a different function than
the one we have access to.

Classification machine learning — generalization 109

Data alone is not enough

We know we need to generalize from examples, but how to do it? There are 2100,000

possible inputs for the hypothetical spam classifier, and even if we have a training
database of millions of emails, it is still only a very small fraction of all the possibilities.

How is the learner supposed to figure out the outcome of all the unseen samples? The
shortest answer is: knowledge.

Even very simple additional assumptions about the type of the hypothesis function —
like smoothness, similar samples having similar classes, limited dependencies, or limited
complexity — are often enough for effective learning.

In fact, one of the main criteria for choosing a representation is which kinds of problem
knowledge are easily expressed in it.

Classification machine learning — knowledge 110

Overfitting has many facets

What if the knowledge and data we have are not sufficient to completely determine the
correct classifier? Then we run the risk of creating a classifier that is not grounded in
reality, and is simply encoding random quirks in the data.

This problem is called overfitting, and is one of the biggest headaches of machine
learning. When the learner produces a classifier that is 100% accurate on the training
data but only 50% accurate on test data, when in fact it could have produced one that
is 75% accurate on both, then we know it has overfit.

Classification machine learning — overfitting 111

Bias and variance

One way to understand overfitting is by
decomposing the generalization error into
bias and variance.

Bias is a learner’s tendency to consistently
learn the same wrong thing.

Variance is the tendency to learn random
things irrespective of the real signal.

A linear learner has high bias, because when the frontier between two classes is not
a hyperplane the learner is unable to induce it. Decision trees don’t have this problem
because they can represent any Boolean function, but on the other hand they can
suffer from high variance: decision trees learned on different training sets generated by
the same phenomenon are often very different, when in fact they should be the same.

Similar reasoning applies to the choice of optimization method: beam search has lower
bias than greedy search, but higher variance, because it tries more hypotheses.

Classification machine learning — bias and variance 112

More powerful is not necessarily better

This figure illustrates an
experiment in which data originally
classified with a rule-based
classifier have subsequently been
machine learned using a basic
Naive Bayes and state-of-the-art
rule C4.5rules algorithms.

Even though the original classifier is a set of rules, with up to 1000 examples naive
Bayes is more accurate than a rule learner. This happens despite naive Bayes’s false
assumption that the frontier is linear! Situations like this are common in machine
learning: strong false assumptions can be better than weak true ones, because a learner
with the latter needs more data to avoid overfitting.

Classification machine learning — algorithms 113

Problems with multi-dimensional spaces

After overfitting, the biggest problem in machine learning is the curse of
dimensionality. Its basic meaning is that many algorithms that work fine in low
dimensions become intractable when the input is high-dimensional.

But in machine learning it refers to much more. Generalizing correctly becomes
exponentially harder as the dimensionality (number of features) of the examples grows,
because a fixed-size training set covers a dwindling fraction of the input space. Even
with a moderate dimension of 100 and a huge training set of a trillion examples, the
latter covers only a fraction of about 10−18 of the input space!

Classification machine learning — multi-dimensional spaces 114

Problems with multi-dimensional spaces (2)

The similarity-based reasoning that machine learning algorithms depend on (explicitly
or implicitly) breaks down in high dimensions. Consider a nearest neighbor classifier
with Hamming distance as the similarity measure, and suppose the class is just
x1 ∧ x2. If there are no other features, this is an easy problem. But if there are 98
irrelevant features x3, ..., x100, the noise from them completely swamps the signal in x1

and x2, and nearest neighbor effectively makes random predictions.

Even more disturbing is that nearest neighbor still has a problem even if all 100
features are relevant! This is because in high dimensions all examples look alike.
Suppose, for instance, that examples are laid out on a regular grid, and consider a test
example xt. If the grid is d-dimensional, xt’s 2d nearest examples are all at the same
distance from it. So as the dimensionality increases, more and more examples become
nearest neighbors of xt , until the choice of nearest neighbor (and therefore of class) is
effectively random.

Classification machine learning — multi-dimensional spaces 115

Intuition fails in high dimensions

Building a classifier in two or
three dimensions is easy. We
can find a reasonable frontier
between examples of different
classes just by visual
inspection.

(It’s even been said that if
people could see in high
dimensions, machine learning
would not have been
necessary.)

In high dimensions it’s hard to understand what is happening. This in turn makes it
difficult to design a good classifier. Naively, one might think that gathering more
features never hurts, since at worst they provide no new information about the class.
But in fact their benefits may be outweighed by the curse of dimensionality.

Classification machine learning — multi-dimensional spaces 116

Feature engineering is the key

If there is the single most important factor which can make a machine learning project
is a success or a failure then it is the set of features used. If we have many independent
features that each correlate well with the class, learning is easy. If the class is a very
complex function of the features, we may not be able to learn it.

Often the raw data are not in a form that is amenable to learning, but we can
construct features from it that are. This is another place where we can bring
knowledge into the process, and where most effort in a machine learning project can be
spent. It is often also one of the most interesting parts, where intuition, creativity, and
“black art” are as important as the technical stuff.

Classification machine learning — feature engineering 117

Feature engineering is the key (2)

The feature engineering process can be automated, to some degree, by automatically
generating large numbers of candidate features and selecting the best by their
information gain with respect to the class. But features that look irrelevant in isolation
may be relevant in combination. For example, if the class is an XOR of k input
features, each of them by itself carries no information about the class.

On the other hand, running a learner with a very large number of features to find out
which ones are useful in combination may be too time-consuming, or cause overfitting.
So there is ultimately no replacement for the smarts we put into feature engineering.

Classification machine learning — feature engineering 118

More data beats a cleverer algorithm

Suppose we have constructed the best set of features we can, but the classifiers we are
getting are still not accurate enough. What can we do now?

There are two main choices: design a better learning algorithm, or gather more data:
more examples, and possibly more raw features, subject to the curse of dimensionality.
Machine learning researchers are mainly concerned with the former, but pragmatically
the quickest path to success is often to just get more data. As a rule of thumb, a dumb
algorithm with lots and lots of data beats a clever one with modest amounts of it.
After all, this is what machine learning is all about — letting data do the heavy lifting.

Classification machine learning — need for more data 119

More data beats a cleverer algorithm (2)

Part of the reason why using cleverer algorithms has a smaller payoff than we might
expect is that, to a first approximation, they all do the same. All learners essentially
work by grouping nearby examples into the same class; the key difference is in the
meaning of “nearby.”

With non-uniformly distributed data,
learners can produce widely different
frontiers while still making the same
predictions in the regions that matter
(those with a substantial number of
training examples, and therefore also
where most test examples are likely to
appear).

The effect is much stronger in high
dimensions.

Classification machine learning — need for more data 120

A stronger algorithm is not always better

Trying to start machine learning with the “strongest” methods is usually not the best
strategy. There is no substitute for independently conducting initial experiments, and
looking for ways to improve the result.

As a rule, it pays to try the simplest learners first, eg.:

• naive Bayes before logistic regression
• k-nearest neighbors before support vector machines
• ...

More sophisticated learners are seductive, but they are usually harder to use, because
they have more knobs you need to turn to get good results, and because their internals
are more opaque.

We should turn to them when we are satisfied that we explored all options with the
simpler ones, and have the resources necessary for the deeper exploration: time and
skill.

Classification machine learning — algorithm selection 121

Classification machine learning — algorithm selection 122

Useful Resources

Parts of the following resources have been used in this presentation:

1. Stuart J. Russell, Peter Norvig: Artificial Intelligence A Modern Approach (Fourth
Edition), Pearson, 2021

2. Ian H. Witten, Eibe Frank, Mark A. Hall: Data Mining Practical Machine Learning
Tools and Techniques, Third Edition, Morgan Kaufman, 2011

3. Kevin P. Murphy: Machine Learning A Probabilistic Perspective, MIT Press, 2012
(images made available by the MIT Press)

4. Leslie Kaelbling, Tomás Lozano-Pérez: M.I.T. 6.034 Artificial Intelligence Spring
2005 http:

//ocw.mit.edu/courses/electrical-engineering-and-computer-science/

6-034-artificial-intelligence-spring-2005/lecture-notes/

5. Tom M. Mitchell: Generative and Discriminative Classifiers: Naive Bayes and
Logistic Regression, draft chapter intended for inclusion in the upcoming second
edition of the textbook Machine Learning, 2017
http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf

6. Pedro Domingos: A Few Useful Things to Know about Machine Learning,
Communications of the ACM, 2012

Machine learning — resources 123

Machine learning — resources 124

