
Unsupervised learning

Supervised, classification:

Training set:
{〈(x1

1, x1
2), c1〉, 〈(x2

1, x2
2), c2〉, ...〈(xN

1 , xN
2), cN 〉}

Unsupervised, clustering:

Training set:
{〈(x1

1, x1
2)〉, 〈(x2

1, x2
2)〉, ...〈(xN

1 , xN
2)〉}

Unsupervised learning 1

Unsupervised learning 2

The k-means algorithm

The k-means algorithm offers a very simple, popular and effective clustering method.
It is based on comparing distances and determining clusters represented by their
geometric centers — centroids, minimizing a certain cost function.

The algorithm assumes that K — the number of clusters to be generated — is known.
It repeats two steps: the labeling step and the centroids shift step.

The k-means algorithm:

Step 0 (initialization): set the initial values of all K centroids

REPEAT {

Step 1 (labeling): mark all samples with the label of the nearest centroid

Step 2 (centroids shift): move all centroids to the geometric centers of their
clusters

}

Unsupervised learning — k-means algorithm 3

Step 0 (initialization) Step 1 (labeling)

Step 2 (centroid shift) Step 1 (labeling)
Unsupervised learning — k-means algorithm 4

Step 1 (labeling) Step 2 (centroid shift)

Step 1 (labeling) Step 2 (centroid shift)
Unsupervised learning — k-means algorithm 5

The k-means algorithm — the quality criterion

The k-means algorithm attempts to find the minimum of a certain cost function that is
a measure of the quality of the generated set of clusters. This cost function is the
weighted sum of the distances of all points to the cluster centroids.

We can observe that the first step of the algorithm (labeling) optimizes this cost
function w.r.t. the mean distance, while keeping the centroids fixed.

The second step of the algorithm (centroid shift) optimizes the same function w.r.t.
the position of the centroids, while preserving the current clusters.

Unsupervised learning — k-means algorithm 6

The k-means algorithm — the distance measures

Various methods can be used to calculate the distance in the feature space:

Euclidean
√

∑

i(ai − bi)2

Manhattan ∑

i |ai − bi|

Max maxi |ai − bi|

In general: due to the possible scale discrepancy, just as it is done in other methods
based on distance calculation, individual coordinates should be scaled to calculate the
distance in the space of features. The scaling factor can be the variance of the given
attribute value on the training set.

Non-numeric data pose a special problem. In some cases, such as text strings, there
are a!number of metrics dedicated for them. Simple examples of such metrics are the
Hamming and Levenshtein distance.

Hamming distance (only for strings of equal length) = the number of positions at
which the corresponding symbols in both strings differ. It is equivalent to the minimum
number of single character substitution required to transform one string into the other.

Levenshtein distance (for any strings) = the smallest number of single character
insertions, deletions, or substitutions required to transform one string into the other.

Unsupervised learning — k-means algorithm 7

The k-means algorithm — another example

An example from Wikipedia:
https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means_convergence.gif

As we can see in the above example, the k-means algorithm does not always generate
so intuitively correct results, as in the previous examples. There are a number of
special cases that need to be considered, to obtain optimal results.

Unsupervised learning — k-means algorithm 8

K-means special case — centroid with empty set

What to do when a centroid with an empty set is created during the operation of the
algorithm?

Method 1: eliminate that centroid and continue, effectively (K-1) clusters.

However, it is possible that the number of clusters is imposed, and we need to preserve
it. Then:

Method 2: re-initialize the location of this centroid, and continue.

Unsupervised learning — k-means algorithm 9

K-means special case — no cluster separation

Not always a set of samples breaks down naturally into clearly separated clusters. We
may still want to group the data.

For example, the T-shirt manufacturer
performed an anthropometric study to
design well-fitting shirts in several sizes
(eg: S, M, L):

The algorithm still works correctly,
finding the specified number of clusters
based on distances:

Unsupervised learning — k-means algorithm 10

The k-means algorithm — initialization

In the simplest case, the initialization can be random, ie. arbitrary K training samples.
However, it does not always give good results.

In the case like above left, we may get the desired solution (above right). However,
unfortunate initialization can lead to any of the solutions below.

Unsupervised learning — k-means algorithm 11

The k-means algorithm — initialization (cont.)

How can we avoid the effects of an unfortunate initialization that can lead to
generating suboptimal clusters that reach local minima of the cost function?

As with the simulated annealing method, we can drop the generated centroids, and
choose them again randomly. However, to compare the measure of quality (cost
function, ie. the weighted sum of the distances of all points to their cluster centroids),
the algorithm should be run to the end in both cases.

In practice, this means multiple (100?, 1000 times?) repetitions of the k-means
algorithm for randomly selected starting points, and selecting the solution globally
minimizing the cost function.

There are more “scientific” approaches to k-means initialization, such as the
k-means++ initialization algorithm, which greatly improves the outcome of
subsequently applying k-means. K-means++ doess k passes on the dataset, so it does
not scale well for large datasets. Its improved version k-means‖ gives similar results
and is much better scalable.

1.D.Arthur, S.Vassilvitskii: “K-means++: the advantages of careful seeding”, 2007
2.B.Bahmani, B.Moseley, A.Vattani, R.Kumar, S.Vassilvitskii: “Scalable K-means++”

Unsupervised learning — k-means algorithm 12

The k-means algorithm — choosing the number of clusters

The number of clusters K required by the algorithm is not always known in advance,
and may sometimes need to be determined experimentally.

The elbow point method:

Unsupervised learning — k-means algorithm 13

The elbow point method does not always work. Often the curve does not have the
characteristic bend point, and simply asymptotically decreases as the number of
clusters increases.

Unfortunately, in this case, we may not try to optimize the quality criterion, ie. the
weighted sum of the distances of all points to their centroids. This is because the sum
reaches zero for the number of clusters equal to the number samples K = N .

In this case, we can refer to the nature of the problem from which samples come. It is
necessary to make a subjective assessment of the number of clusters which will be
appropriate for this problem instance.

Unsupervised learning — k-means algorithm 14

The k-means algorithm — special problems

The k-means algorithm works well in many practical cases. However, there are cases
which it definitely cannot handle. Such cases are clusters of differing sizes, as well as
clusters with different density of the samples in the training set.

Unsupervised learning — k-means algorithm 15

The k-means algorithm — special problems (2)

The problem with concave clusters
can be solved indirectly by
increasing the number of clusters.

Unsupervised learning — k-means algorithm 16

The k-means algorithm — summary

K-means is a simple and effective clustering algorithm. Its computational complexity is
O(tKN) where K, N are respectively the number of clusters and samples, while t is
the number of iterations of the algorithm. Usually K, t≪ N .

However, it has some important problems that make it difficult, or they prevent its use:

• requires the number K of clusters to be known,

• is sensitive to the initialization of centroids; can converge to nonlocal minima,

• works with numerical data (calculation of means and distances); has problems with
categorical data,

• has problems with clusters with non-convex shapes,

• has problems with clusters of varying sizes,

• has problems with clusters of different densities.

Unsupervised learning — k-means algorithm 17

Unsupervised learning — k-means algorithm 18

The Expectation Maximization (EM) algorithm

An approach similar to the k-means algorithm can be made on the probabilistic
grounds. Assuming that the training set points belong to K clusters with some
random probability distribution, it is natural to assume that these clusters result from
normal probability distributions, so-called mixture of normal or Gaussian
distributions. The algorithm EM (Expectation Maximization) learns the
parameters of such a mixture of distributions.

The figure on the left shows a mixture of three simulated normal distributions.
The middle figure shows the set of points generated for this distribution.
The figure on the right shows a mixture of distributions learned by the EM algorithm.

Unsupervised learning — EM algorithm 19

The Expectation Maximization (EM) algorithm (cont.)

Assuming that the variable C denotes the mixture component in the range 1, ..., K,
the probability distribution of the mixture is given by the formula:

P (x) =
K
∑

i=1
P (C = i)P (x|C = i)

where x is the vector of the sample attributes.

The parameters of the distribution are: wi = P (C = i) (weight of the component i),
µi (the mean of the component i), and ∑

i (the covariance of the component i).

The idea of the algorithm is that we initially assume certain parameter values of the
above distribution. In each cycle of the algorithm, for each point, the probability that it
belongs to subsequent components is calculated. Then, the parameters of all
components are recalculated based on all points, with weights as membership
probabilities of a given point to a given component. These two steps are repeated until
the algorithm converges, as with the k-means method.

Unsupervised learning — EM algorithm 20

EM — Expectation Maximization algorithm (cont.)

EM algorithm:

Initialization: set the initial values of all component parameters

REPEAT {

Step E: Calculate the probabilities pij = P (C = i|xj) that the sample xj belongs to
component i. Under the Bayesian rule, we have: pij = αP (xj|C = i)P (C = i).
We define ni = ∑

j pij, which is the effective number of points currently assigned to
component i.

Step M: Calculate new means, covariances, and component weights using the
following formulas:

µi ←
∑

j
pijxj/ni

Σi ←
∑

j
pij(xj − µi)(xj − µi)

⊤/ni

wi ← ni/N

}

Unsupervised learning — EM algorithm 21

EM — Expectation Maximization algorithm (cont.)

The EM algorithm is not free from some problems. It is possible that one of the
components will be reduced to a single point with zero variance and probability equal
to 1. Another problem is the overlap (complete) of two components, which then share
the same set of points.

Such phenomena lead to the convergence of the algorithm to a local maximum. This is
a serious problem, especially in multidimensional spaces. The solution may be to
reinitialize the component with new parameters, similar to the k-means algorithm.

Unsupervised learning — EM algorithm 22

Relationship between the k-means and EM methods

These algorithms are in some ways similar, they take two steps alternately: (1)
generate clusters, and (2) transfer samples between clusters.

One significant difference is that in the k-means algorithm, points are categorically
assigned to clusters, while EM assigns all points the probability of belonging to all
distributions.

Another difference is the Gaussian model underlying the EM algorithm. The k-means
algorithm, unlike the EM, is able to generate result distributions that are in no way
similar to Gauss distributions. On the other hand, many natural phenomena follow the
Gaussian model, so the EM algorithm works correctly for them.

Unsupervised learning — EM algorithm 23

Unsupervised learning — EM algorithm 24

DBSCAN — density-based approach to clustering

DBSCAN is an algorithm developed to overcome the difficulty of k-means in clustering
oddly-shaped clusters:

• classifies all points as: core points of
some cluster, border points of a
cluster, and outliers, which do not
belong to any cluster,

• does not require the number of clusters
to be specified in advance,

• can find arbitrarily-shaped clusters;
it can even find a cluster completely
surrounded by (but not connected to)
a different cluster,

• requires two parameters: minPts

specifies a minimum number of
neighbor points to declare a point as
a core point, and eps specifies the
radius of a point’s neighborhood.

Unsupervised learning — EM algorithm 25

DBSCAN algorithm

1. Identify Core Points:
For each point in the dataset count the number of points in its eps-radius
neighborhood; if it exceeds the minPts, then mark the point as a core point.

2. Form Clusters:
Find the connected components of core points on the eps-distance neighborhood
graph. Each connected component is a separate cluster.

All non-core points within the eps-distance from a cluster point also belong to this
cluster, but are marked as border points.

Points in such clusters
are density-connected.

3. Label Noise Points:
After processing all points, any point
that does not belong to a cluster
is marked as noise points.

Unsupervised learning — EM algorithm 26

Hierarchical clustering

Cluster analysis can be performed by building a hierarchy of clusters in one of two
basic ways:

• bottom-up way, by starting from each sample representing a separate cluster, then
merging them pairwise, to build larger clusters;
this approach is referred to as agglomerative clustering

• top-down way, by starting from one cluster representing all samples, then splitting
larger clusters into smaller ones;
this is termed divisive clustering

The decisions of which clusters should be merged, or which cluster to split, and where
exactly, is typically based on measuring distances between samples and clusters.

So in some way this is similar to the k-means approach, but is also different, in the
necessity to measure the distance between clusters.

Unsupervised learning — Hierarchical clustering 27

Agglomerative clustering — example

Agglomerative clustering is the more common approach. An example:

The resulting tree can be cut at a some height to produce the desired number of
clusters.

Unsupervised learning — Hierarchical clustering 28

Cluster distance metrices

There are quite a few methods for measuring the inter-cluster distances:

• MIN — tends to produce long “loose” clusters

• MAX — tends to produce more compact clusters

• group average — considers the average distance between each point in one cluster
to every point in the other one

• distance between centroids —

• Ward’s method — similar as group average but sums up the squares of distances,
minimizes the total within-cluster variance

Unsupervised learning — Hierarchical clustering 29

Unsupervised learning — Hierarchical clustering 30

Dimension reduction

There are a number of dimension reduction methods that can transform a data
representation into another space with a smaller dimension. One of the reasons
motivating this transformation is the curse of dimensionality, which is one of the
main problems of machine learning.

Figuratively speaking, many machine learning algorithms that efficiently process data
in low-dimensional spaces, cease to function satisfactorily when the space dimension is
large.

From another point of view, the data is typically represented by a number of
parameters, some of which may not have a significant (or any) impact on the ability to
classify or cluster these data. Such redundant parameters not only do not help in the
automatic detection of patterns existing in the data, but significantly hamper the
learning process, because they introduce false apparent correlations which mislead the
algorithms.

Therefore, it is profitable to perform an analysis and reduction of dimensions before
proceeding to a machine learning experiment. One effective method of this is the
Principal Component Analysis (PCA).

Unsupervised learning — dimension reduction 31

The Principal Component Analysis (PCA) — an example

Consider some set of points:

Move its geometric center to the origin of the coordinate system:

Unsupervised learning — Principal Component Analysis (PCA) 32

Compute the covariance matrix of the data set:

∑

=









var(x) cov(x, y)
cov(x, y) var(y)








=









9 4
4 3









This covariance matrix generates some linear transformation:

(x, y) −→ (9x + 4y, 4x + 3y)

This transformation transfers the original points to a coordinate system whose axes are
eigenvectors of the covariance matrix, and the eigenvalues represent the linear
extension:

Eigenvectors









2
1

















−1
2









Eigenvalues 11 1

Unsupervised learning — Principal Component Analysis (PCA) 33

The original points are exactly represented in the new coordinate system whose axes
are called the principal components. However, for the purposes of dimension
reduction, we want to keep only one coordinate. It must be the main component with
the greatest eigenvalue.

A dimension reduction is obtained by the
representation of points by projecting them
into a space with lower dimensions, i.e. in
this case on the selected coordinate axis.
It is therefore an approximate
representation.

Unsupervised learning — Principal Component Analysis (PCA) 34

The PCA Algorithm

The PCA algorithm finds a M -dimensional approximation of the data set
{xn : n = 1, ..., N} with the original dimension dim(xn) = D (M < D):

1. Calculate the vector of the means m of a set of samples with size D × 1 and
covariance matrix S size D ×D:

m =
1

N

N
∑

n=1
xn, S =

1

N − 1

N
∑

n=1
(xn −m)(xn −m)T .

2. Determine the eigenvectors e1, ..., eD of the covariance matrix S sorted by
decreasing eigenvalues of the eigenvectors. Create the matrix E = [e1, ...eM].

3. A low-dimensional representation of yn, and an approximate reconstruction x′n of
each of the xn samples are given by:

yn = ET (xn −m), xn ≈ x′
n

= m + Eyn.

4. The total square error of the approximation for the training set is:
N
∑

n=1
(xn − x′

n
) = (N − 1)

D
∑

j=M+1
λj

where λM+1, ..., λN are the omitted eigenvalues.

Unsupervised learning — Principal Component Analysis (PCA) 35

Note: the PCA algorithm is sensitive to the magnitudes of parameter values. If one
parameter has much greater values than another, then the PCA algorithm will
invariably select that first parameter as the first primary component, and the other one
as the second. For this reason, the parameters should be rescaled uniformly before
applying the PCA.

Unsupervised learning — Principal Component Analysis (PCA) 36

Market basket analysis

There are a number of data mining/machine learning methods for purchases. Consider
the two types of recommendations displayed by sales portals such as Amazon:

• Frequently purchased together: ...

• Customers who bought this product also bought ...

The first group of methods is referred to as Market Basket Analysis. MBA
methods focus on association rule mining characterizing typical purchases, i.e.,
finding relationships between different items purchased in different transactions. Such
relationships are represented, for example, in the form of IF-THEN rules. One of the
most well-known algorithms of this group is Apriori.

A slightly different approach to mining purchase transaction history data is represented
by Recommender Systems. They aim to determine the preferences of individual
consumers. The best-known algorithms belong to the collaborative filtering group, and
will be considered subsequently.

Unsupervised learning — market basket analysis 37

Market basket analysis — model

We consider the purchase transaction history as a set of transactions
T = {t1, t2, ..., tn}, where a single transaction is a subset of the t ⊆ I of the set of all
available items I = {ii, i2, ..., im}.

Example:

Unsupervised learning — market basket analysis 38

Market basket analysis — association rules
We want to discover relationships between elements of purchase transactions in the
form of association rules of the form, assuming that A and B are disjoint
(A ∩B = ∅) sets of purchase elements (A, B ⊆ I):

A⇒ B

There are probably many such relationships throughout the history of buying, but some
may be stronger than others. We introduce the following measures of the credibility of
the A⇒ B rule based on a set of transactions T .

The Support of the rule A⇒ B in the set of transactions T we call the frequency of
transactions that contain all the elements from A and B:

Support(A⇒ B) = P (A ∪B)

Support(X) = P (X)

The Confidence of the rule A⇒ B in a set of transactions T we call the frequency
of such transactions containing B, which also contain A:

Confidence(A⇒ B) = P (B|A)

In other words, the confidence of a rule tells how often it has been true in the set of
transactions.

Unsupervised learning — market basket analysis 39

In addition, we define the Lift as a fraction:

Lift(A⇒ B) =
P (A ∪B)

P (A) · P (B)

The Lift indicates the overall meaning of the rule in the following sense:

Lift(A⇒ B) > 1 means that A, B are positively correlated

Lift(A⇒ B) < 1 means that A, B are negatively correlated

Lift(A⇒ B) = 1 means that A, B are independent

Unsupervised learning — market basket analysis 40

Market basket analysis — frequent sets

The search for association rules requires defining a minimum threshold of support and
a minimum confidence threshold. The determination of all rules association rules can
be implemented as follows:

• Find all sets of frequent purchased elements.

A set of elements is frequent if it exceeds a given support threshold minsupport.

• Within each frequent set, determine the appropriate association rules.

The association rule is must exceed the minimum confidence threshold minconf to
be selected.

Finding frequent sets requires checking all subsets of the of the set of elements I of
which there are 2|I| − 1 (excluding the empty subset). A full search of these subsets
would be too inefficient.

Unsupervised learning — market basket analysis 41

The Apriori algorithm — generating frequent sets

The apriori property: all subsets of a frequent set are also frequent sets.
And conversely: a superset of a set that is not frequent also cannot be frequent.

This property can be used for the efficient generation of frequent sets according to the
idea: find all frequent one-element sets, then with them generate all two-element sets
and filter out from them only the frequent sets, then generate three-element frequent
sets in the same way, and so on.

Algorithm:

1. Create a collection of one-element frequent sets F1.

2. For k=2..|I| while Fk−1 6= ∅ do:

(a) based on Fk−1 create a collection Ck such k-element frequent set candidates ck,
which are unions of two (k − 1)-element frequent sets f i

k−1 and f j
k−1 with

(k − 2) common elements
(b) each (k − 1)-element subset ck must be a frequent set in Fk−1

(c) create a collection of k-element frequent sets Fk filtering out infrequent sets
from Ck.

Condition (b) results in early filtering of non-frequent sets based on the apriori

property.

Unsupervised learning — market basket analysis: Apriori algorithm 42

The Apriori algorithm — generating association rules

The algorithm for generating rules:

1. For each frequent set X

(a) For each proper and nonempty subset A of set X :
let B = X \A
A⇒ B be an association rule if Confidence(A⇒ B) ≥ minconf

Unsupervised learning — market basket analysis: Apriori algorithm 43

The Apriori algorithm — example

Consider a database of purchase transactions:

ID Elements
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

To execute the Apriori algorithm we will assume the parameters minsupport=0.5;
minconf =0.75.

First iteration:

ID Elements
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒ C1:

set Support
{I1} 2/4=0.5
{I2} 3/4=0.75
{I3} 3/4=0.75
{I4} 1/4=0.25
{I5} 3/4=0.75

⇒ F1:

set Support
{I1} 0.5
{I2} 0.75
{I3} 0.75
{I5} 0.75

Unsupervised learning — market basket analysis: Apriori algorithm 44

Second iteration:

ID Elements
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒ C2:

set Support
{I1,I2} 1/4=0.25
{I1,I3} 2/4=0.5
{I1,I5} 1/4=0.25
{I2,I3} 2/4=0.5
{I2,I5} 3/4=0.75
{I3,I5} 2/4=0.5

⇒ F2:

set Support
{I1,I3} 2/4=0.5
{I2,I3} 2/4=0.5
{I2,I5} 3/4=0.75
{I3,I5} 2/4=0.5

Third iteration:

ID Elements
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒ C3:

set Support
{I1,I2,I3} 1/4=0.25
{I1,I3,I5} 1/4=0.25
{I2,I3,I5} 2/4=0.5

⇒ F3:
set Support

{I2,I3,I5} 2/4=0.5

It should be noted that the sets of {I1,I2,I3} and {I1,I3,I5} were rejected by the
Apriori algorithm even before the calculation of their support because they contain
subsets that do not belong to F2 (step 2b of the algorithm).

The algorithm stopped on the fourth iteration because the set C4 is empty. The
frequent sets with F2 and F3 pass to rule generation because the one-element sets
from F1 do not generate any rules.

Unsupervised learning — market basket analysis: Apriori algorithm 45

Rule generation:

ID Elements
T1 I1 I3 I4
T2 I2 I3 I5
T3 I1 I2 I3 I5
T4 I2 I5

⇒

ID zbiór reguła Confidence
R1 {I1,I3} {I1} ⇒ {I3} 2/2=1.0
R2 {I1,I3} {I3} ⇒ {I1} 2/3=0.66
R3 {I2,I3} {I2} ⇒ {I3} 2/3=0.66
R4 {I2,I3} {I3} ⇒ {I2} 2/3=0.66
R5 {I2,I5} {I2} ⇒ {I5} 3/3=1.0
R6 {I2,I5} {I5} ⇒ {I2} 3/3=1.0
R7 {I3,I5} {I3} ⇒ {I5} 2/3=0.66
R8 {I3,I5} {I5} ⇒ {I3} 2/3=0.66
R9 {I2,I3,I5} {I2,I3} ⇒ {I5} 2/2=1.0
R10 {I2,I3,I5} {I2,I5} ⇒ {I3} 2/3=0.66
R11 {I2,I3,I5} {I3,I5} ⇒ {I2} 2/2=1.0
R12 {I2,I3,I5} {I2} ⇒ {I3,I5} 2/3=0.66
R13 {I2,I3,I5} {I3} ⇒ {I2,I5} 2/3=0.66
R14 {I2,I3,I5} {I5} ⇒ {I2,I3} 2/3=0.66

Finally, for the given parameters, the Apriori algorithm generated five association rules.

Unsupervised learning — market basket analysis: Apriori algorithm 46

Recommender systems

We will now look at another approach related to analyzing data purchasing, concerning
recommendation systems. Wanting to recommend a certain commodity to a certain
consumer, we want to predict his possible evaluation of that commodity. For this
procedure of determining the consumer’s possible evaluation is often used the term
filtering, which in statistics is used in reference to the approximation of current
(rather than future or past).

To determing the expected rating of item A by consumer X we can use:

used-based collaborative filtering
if consumer X is similar to Y, and Y bought A; recommend A to consumer X

item-based collaborative filtering
if consumer X bought A, and A is similar to B; recommend B to consumer X

There are also hybrid approaches possible, combining the above two in different ways.

Recommender systems learn to determine specific values based on memorized data,
and therefore formally belong to supervised learning methods. We discuss them in the
group of algorithms devoted to unsupervised learning because of the similarity of
applications.

Recommender systems — collaborative filtering 47

Collaborative and content-similarity based filtering

In principle, the task of determining the unknown parameter A of a sample X when the
parameter this parameter is known in the learning series, is typically a classification
task (when the the values of the parameter A are discrete in nature) or regression
(when these values are selected from a continuous numerical range). Thus, previously
learned algorithms can be apply previously learned algorithms. This approach to the
issue of of recommendations is referred to as model based.

However, another approach is possible, which is to select from the the dataset we have
of samples on consumers , “similar” in some sense to consumer X, and basing the
recommendation on the parameters of only those consumers. (Or, in the case of
filtering based on similarity of content, on selecting only goods , “similar” to the A in
question.) This approach is referred to as memory-based and will be briefly introduced
here.

One advantage of the latter approach is that the result obtained is easily presented in
context and justified.

Recommender systems — collaborative filtering 48

Collaborative filtering — calculating consumer similarity

Assuming that the available data contains ratings of multiple goods determined by
consumers, we can calculate the “similarity” of consumers X and Y based on their
ratings rx,1, rx,2, ..., ry,1, ry,2... of a certain group of goods Ixy rated by both
consumers, using one of the following similarity models.

Pearson similarity model:

simil(x, y) =

∑

i∈Ixy

(rx,i − r̄x)(ry,i − r̄y)
√

√

√

√

√

∑

i∈Ixy

(rx,i − r̄x)2
√

√

√

√

√

∑

i∈Ixy

(ry,i − r̄y)
2

Similarity calculated as the cosine of the angle between the attribute vectors:

simil(x, y) = cos(~x, ~y) =
~x · ~y

||~x|| × ||~y||
=

∑

i∈Ixy

rx,iry,i

√

√

√

√

√

∑

i∈Ixy

r2
x,i

√

√

√

√

√

∑

i∈Ixy

r2
y,i

Recommender systems — collaborative filtering 49

Collaborative filtering — determining consumer ratings

Having the similarities of consumers calculated with respect to the rated goods, we can
select a certain set U of N consumers most similar to a given consumer u, and
determine their rating of the good i as:

ru,i =
1

N

∑

u′∈U
ru′,i or:

ru,i =

∑

u′∈U
simil(u, u′)ru′,i

∑

u′∈U
|simil(u, u′)|

or:

ru,i = r̄u +

∑

u′∈U
simil(u, u′)(ru′,i − r̄u′)

∑

u′∈U
|simil(u, u′)|

The first version is a simple average of ratings of “similar” consumers, the second is an
average of ratings weighted by the mutual similarity of consumers, and the third
additionally isolates from the absolute value of the ratings of individual consumers,
calculating only the differences from their average ratings, and applying the relative
difference in the rating of an item i to the average rating of the consumer u.

Recommender systems — collaborative filtering 50

Item-based filtering

In item similarity-based filtering, we use the the same data of ratings of multiple goods
by multiple consumers, but this time we calculate the similarity matrix of the goods,
using the same similarity formulas.

Next, we determine the set of N goods most similar to the item whose rating for
a consumer u we want to determine, and we determine the rating using one of the
averaging methods similarly to how we averaged consumer ratings.

Recommender systems — collaborative filtering 51

Recommender systems — collaborative filtering 52

Rating matrix factorization

A completely different approach to collaborative filtering is the idea of factorization of
the original rating matrix R ∈ Rusers×items into two matrices, of which the first one
H has rows corresponding to all consumers, and the second W has columns
corresponding to all goods. The columns of the first and rows of the second of the
matrix are associated with newly created latent factors (hidden variables) in such
a way that the vector product of the matrix H and W as faithfully as possible
approximates the evaluation matrix, and then completes the evaluations, which are
missing and which need to be determined:

R̃ = H ×W

where:
R̃ ∈ Rusers×items is a matrix of item rating predictions,
H ∈ Rusers×latent factors is a matrix of latent variables of users,
W ∈ Rlatent factors×items is a matrix of latent variable of items (transposed).

This idea of matrix factorization is to aims to identify a number of state variables
(latent variables) allowing evaluations to be expressed using matrices of lower
dimensionality. This is somewhat equivalent to the principal component analysis
method (Pricipal Component Analysis, PCA).

Recommender systems —rating matrix factorization 53

Methods for factorization of evaluation matrix

Latent variables are usually determined by machine learning methods, such as such as
neural networks. A number of methods have been proposed factorization of rating
matrices. The first version of rating matrix factorization, called Funk MF was
developed in response to a Netflix contest. In this version, the prediction r̄ui of a user
u rating of an item i is calculated according to the formula:

r̄ui =
n factors

∑

f=0
H [u, f]W [f, i]

The expressive power of the latent variable space is related to its dimension. For
a single latent variable, this representation boils down to the choice of the the most
frequently recommended item, regardless of the consumer. Increasing number of
variables allows the introduction of personalization, and the quality of the
recommendations resulting from the value of ratings increases, and above a certain
number of variables begins to tend to overfit. To avoid overfitting, regularization is
used, which involves adding a regularization component to the evaluation function.

The Funk MF method minimizes the evaluation function:

argminH,W ||R− R̃||F + α||H|| + β||W ||

Where ||.||F is the Frobenius norm which is some generalization of the Euclidean norm.

Recommender systems —rating matrix factorization 54

Useful resources

In this presentation materials from the following works were used:

1. Andrew Ng: Unsupervised learning, Coursera video lecture

2. Stuart J. Russell, Peter Norvig: Artificial Intelligence A Modern Approach (Third
Edition), Prentice-Hall, 2010

3. Kevin P. Murphy: Machine Learning A Probabilistic Perspective, MIT Press, 2012

4. Pedro Domingos: Data Mining, Machine learning, a collection of video lectures
available by Youtube, Paul G. Allen School of Computer Science & Engineering,
University of Washington, 2016

5. Wikipedia: Collaborative filtering
https://en.wikipedia.org/wiki/Collaborative_filtering

6. Wikipedia: Matrix factorization (recommender systems)
https:

//en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)

Unsupervised learning — resources 55

