Zastosowania binarnych drzew przeszukiwan BST

Binarne drzewa przeszukiwan BST s3 strukturg niezmiernie przydatng w praktyce,
wykorzystywang w bardzo wielu zastosowaniach. Podstawowym schematem, w ktérym
sg wykorzystywane s3 tablice symboli. Tablica symboli jest strukturg, ktéra pozwala
powigzac klucze z wartosciami. Ogolnie zastosowania tablic symboli obejmuja
wszelkiego rodzaju stowniki, indeksy, skorowidze, bazy danych, wyszukiwarki, itp.

Najwieksze znaczenie w zastosowaniach takich tablic ma operacja wyszukiwania, ktora
jest wykonywana powtarzalnie, bardzo wiele razy. Nawet dla tablic o umiarkowanych

wielkosciach, dla ktorych asymptotyczny czas wykonywania operacji niekoniecznie jest
kluczowy, liczy sie maksymalna sprawnosc ich obstugi, gtéwnie operacji wyszukiwania.

Poniewaz drzewa BST s3 uporzadkowane, sprawnos¢ wyszukiwania kluczy powinna by¢
na poziomie wyszukiwania binarnego w tablicach uporzadkowanych, czyli O(logn).
Jednak widzielismy, ze liczba krokéw w przeszukiwaniu drzew BST jest O(h), gdzie h
jest wysokoscig drzewa binarnego, ktéra moze wynosi¢ od log, n do n.

Bardzo wazna kwestig jest wiec jak zapewnié, by wysokos¢ budowanych drzew BST
wynosita log, n, a przynajmniej O(log,).

Drzewa zréwnowazone AVL

Optymalne drzewa BST

Tablice symboli moga by¢ budowane dynamicznie, ale w szeregu zastosowan tablica
jest budowana jednorazowo, i potem tylko wykorzystywana w trybie read-only (np.
ksigzka telefoniczna). Ponadto, w wielu zastosowaniach struktura jest tylko budowana
| potem wykorzystywana — operacja usuwania nie jest w ogdle potrzebna.

W tych przypadkach mozna wzig¢ pod uwage rozktad czestotliwosci wyszukiwania
kluczy, i zbudowac drzewo, ktore zminimalizuje oczekiwany czas wyszukiwania klucza
z tego konkretnego rozktadu. Gdy te najczesciej wyszukiwane klucze znajda sie blisko
korzenia drzewa BST, skroceniu ulegnie czas tych najczesciej wykonywanych
wyszukiwan, kosztem rzadko wyszukiwanych kluczy, ktore moga by¢ zlokalizowane

w lisciach, nawet w dtuzszych gateziach drzewa.

Nie interesuje nas juz zatem najgorszy przypadek wyszukiwania, i nie bedziemy
prébowali zapewni¢ by wysoko$¢ drzewa byta utrzymana w granicach O(log, n).
Zamiast tego, globalnej optymalizacji podlega jedynie Sredni czas wyszukiwania zgodny
z przyjetym rozktadem prawdopodobienstwa wyszukiwania kluczy.

Jednak tutaj nie bedziemy rozwazali metod budowy optymalnych drzew BST zgodnych
z tymi zatozeniami (patrz np. podrozdziat 14.p w podreczniku CLRS). Zamiast tego
zajmiemy sie zagadnieniami budowy prawdziwie dynamicznych drzew binarnych.

Drzewa zréwnowazone AVL 2

Srednia/oczekiwana wysoko$¢ drzewa BST

Mozna udowodnic, ze dla danego zbioru kluczy, oczekiwana wysokos¢ drzewa BST
zbudowanego podstawowg procedurg TREE-INSERT, usredniona po wszystkich
permutacjach tego zbioru kluczy, wynosi O(log,n).

Moze to sprawiaC wrazenie, ze dla celow zastosowan, gdzie istotny jest Sredni
przypadek czasu dziatania programu, zwykta procedura budowy drzewa BST jest
wystarczajaca, i nie musimy rozwazac przypadku najgorszego. Jednak nie jest to do
konca prawda. Jesli chcemy usredniac po wszystkich budowanych drzewach to owszem,
Srednie drzewo bedzie miato wysoko$¢ O(log, n). Jednak jesli w konkretnym
zastosowaniu, konkretny program zbuduje drzewo zdegenerowane, o wysokosci €2(n),
to w tej aplikacji oczekiwany czas operacji wyszukiwania bedzie 2(n).

Jesli wiec chcemy mie¢ pewnosé, ze Sredni przypadek wyszukiwania w programie
budujacym dynamicznie drzewo BST bedzie dziatat w czasie O(log, n) to musimy
zapewni¢, by drzewo w kazdym przypadku miato wysoko$¢ O(log, n).

Drzewa zréwnowazone AVL 3

Drzewa zrownowazone

Drzewo BST zawierajgce n weztéw n=1 | h=0
o wysokosci doktadnie h = [logy(n +1)] — 1 n=23 | h=1
nazywamy (w pefni) zrébwnowazonym. n=45,6,7 | h=2

Budowa w petni zrownowazonych drzew BST jest niepraktyczna. Nie s3 znane zadne
efektywne algorytmy budowy takich drzew. Kazdy algorytm jest praktycznie
rownowazny zbudowaniu wszystkich mozliwych drzew z wszystkich permutacji ciggu
wejsciowego i wybraniu drzewa o minimalnej wysokosci!

Zamiast tego, badania koncentruj3 sie nad wynalezieniem efektywnych algorytmow
budowy drzew czeSciowo zrownowazonych, to znaczy takich, ktérych wysokosc

bedzie O(log, n).

Drzewa zréwnowazone AVL

Drzewa AVL

Drzewo BST nazywamy drzewem AVL o ile wysokos¢ dwdch poddrzew dowolnego
wezfa nie rozni sie o wiecej niz 1, w catym drzewie.

Przyktadowe drzewo AVL:

,Zdegenerowane” drzewa AVL.:

a4

Drzewa zréwnowazone AVL

Poniewaz drzewa AVL sg petnoprawnymi drzewami BST, zatem procedury
przeszukiwania na drzewach AVL nie réznig sie od przeszukiwania na zwyktych

drzewach BST.

Jednak jesli chodzi o kwestie budowania i obstugi (dodawania i usuwania elementéw),

to pojawiaja sie jednak dwa istotne pytania:
e Czy przeszukiwanie na drzewach AVL nadal bedzie $rednio O(logn)?

e Czy istnieje (wzglednie) tatwa metoda budowy takich drzew?

Najpierw zajmiemy sie odpowiedzig na drugie z tych pytan.

Drzewa zréwnowazone AVL

Dodawanie/usuwanie wezta do/z drzewa AVL

Procedury dodawania i usuwania weztéw z drzew AVL mozna zbudowac przez pewne
modyfikacje procedur dla drzew BST. Istotnym elementem utatwiajgcym wykonanie
tych operacji jest dodanie do kazdego wezta drzewa pola balance o wartosci:

—1 — oznacza, ze lewe poddrzewo wezta jest wyzsze (o 1)
0 — oznacza, ze oba poddrzewa wezta s3 w petnej rébwnowadze
+1 — oznacza, ze prawe poddrzewo wezta jest wyzsze (o 1)

Przy dodawaniu wezta z do drzewa, z punktu widzenia wezta na danym poziomie
drzewa, mogfo zdarzy¢ sie, ze poddrzewo, do ktorego wezet z trafit: zyskato
dodatkowy poziom, czyli jego wysokoscC jest teraz +1, lub nie zyskato na wysokosci.
(Przy usuwaniu wezta, poddrzewo mogto straci¢ jeden poziom wysokosci, lub nie.)

Gdy poddrzewo nie zyskato (lub nie stracito) na wysokosci, to z punktu widzenia tego
wezta — jak rowniez wszystkich innych weztdw powyzej, az do samego korzenia — nie
ma zmian w zrébwnowazeniu drzewa (wtasno$¢ AVL), zatem procedura
dodawania/usuwania wezta moze na tym sie zakonczyc.

Rowniez gdy poddrzewo zyskato na wysokosci, ale wczesniej byto nizsze niz jego
blizniak (albo stracito, ale wczesniej byto wyzsze), to réwniez wtasnos¢ AVL pozostaje
zachowana (wzwyz az do korzenia), i trzeba tylko odnotowaé w tym wezle osiggniecie
petnej réwnowagi (balance = 0).

Drzewa zréwnowazone AVL 7

Drzewa AVL — rotacje

Jedynym przypadkiem, kiedy drzewo AVL mogto straci¢ wtasnos¢ AVL jest sytuacja,
kiedy z punktu widzenia jakiegos wezta drzewa, jego poddrzewo do ktdrego zostat
dodany wezet zyskato na wysokosci, a juz wczesniej byto wyzsze (lub stracito, a byto
nizsze). Taka sytuacja wymaga korekty struktury drzewa dla przywrécenia wtasnosci
AVL.

Do przywracania wtasnosci AVL przydatna bedzie operacja rotacji:

prawa rotacja

lewa rotacja

Istotng wtasnoécig rotacji jest fakt, ze z punktu widzenia catej reszty drzewa (powyzej
weztdw K2/K4), wysokos¢ drzewa na ktérym wykonano rotacje sie nie zmienia. Nic sie
rowniez nie zmienia w ramach poddrzew D1, D3, i D5.

Drzewa zréwnowazone AVL 8

Drzewa AVL — korekta zrownowazenia: pojedyncza rotacja

Korekty naruszenia wtasnosci AVL rozwazymy w dwoch przypadkach. Pierwszym
przypadkiem jest, kiedy naruszenie nastgpito w skrajnym poddrzewie drzewa, ktorego

wysokosc¢ sie zwiekszyta:

prawa rotacja

lewa rotacja

Patrzac z lewej do prawej, naruszenie nastgpito w lewym poddrzewie wezta K4,

i przyrosto tam lewe poddrzewo D1 tego lewego poddrzewa K2 (dodany zostat wezet
czerwony). Alternatywnie, patrzac z prawej do lewej, jesli naruszenie nastapito

w prawym poddrzewie K4 danego wezta K2, to rozwazamy przypadek, kiedy wydarzyto
sie to w prawym poddrzewie prawego poddrzewa (dodany zostat wezet niebieski).

Jak widaé, po wykonaniu rotacji réwnowaga catego (pod)drzewa zostata przywrdcona.

Drzewa zréwnowazone AVL

Drzewa AVL — korekta zrownowazenia: podwodjna rotacja

Drugim przypadkiem jest sytuacja, kiedy — z punktu widzenia danego wezta drzewa
— nastgpito naruszenie wtasnosci AVL w jednym z jego poddrzew, ale w tym
poddrzewie wydarzyto sie to w jego poddrzewie ,wewnetrznym".

Inaczej mowiac, jesli z punktu widzenia danego wezta naruszenie nastgpifo
w poddrzewie lewym, to w tym lewym poddrzewie miafo to miejsce w jego poddrzewie

prawym. A jesli naruszenie nastgpito w poddrzewie prawym, to w tym poddrzewie byfo
to w jego poddrzewie lewym.

Ponizszy rysunek ilustruje tylko pierwsza z tych sytuacji (naruszenie w prawym

poddrzewie lewego poddrzewa danego wezta). Druga sytuacje mozna otrzymac przez
lustrzane odbicie rysunku.

W tym przypadku konieczne s3 dwie rotacje: lewa+prawa, dla przywrdcenia rownowagi.

Drzewa zréwnowazone AVL 10

Dodawania wezta do drzewa AVL — pseudokod

Drzewa zréwnowazone AVL

11

Drzewa zréwnowazone AVL

12

Podsumowanie — drzewa czeSciowo zrownowazone

Wysokosc drzewa w przypadku:

Drzewa: najgorszym najlepszym Srednim
binarne BST:

w petni zréwnowaz. logy(N + 1) logy(N + 1) logy(N + 1)
niezréwnowazone N logy(N + 1) 1.39 X logy(N)
drzewa AVL 1.44 x logy(N) logy(N + 1) logy(N) +0.25
drzewa WAVL

czerwono-czarne 2 X logy(N)

niebinarne ST:

drzewa 2-3

B-drzewa logp (M52) + 1 | loggp (N + 1) 1og1.38D+1(DNH) +1

Drzewa zréwnowazone AVL

13

Drzewa zréwnowazone AVL

14

1 G
i 3

NIL | NIL

Drzewa czerwono-czarne

NIL i NIL i NIL | NIL | NIL

kJ 17
2 @ 2 @Al
2 @l 1 @ 1 @&
1 @¥ 1 @§ NIL NI IS 20

NIL | NIL

X 26
41 ¥
2 @RI
1 @& 1 @4 1 @Y
NIL JI NIL I NIL W NIL 1 @RE) i 39
NIL lINIL JINIL lINIL
()

T.nil
(b)

1 @1

NIL | NIL

Drzewa zréwnowazone AVL

15

