
Zastosowania binarnych drzew przeszukiwań BST

Binarne drzewa przeszukiwań BST są strukturą niezmiernie przydatną w praktyce,
wykorzystywaną w bardzo wielu zastosowaniach. Podstawowym schematem, w którym
są wykorzystywane są tablice symboli. Tablica symboli jest strukturą, która pozwala
powiązać klucze z wartościami. Ogólnie zastosowania tablic symboli obejmują
wszelkiego rodzaju słowniki, indeksy, skorowidze, bazy danych, wyszukiwarki, itp.

Największe znaczenie w zastosowaniach takich tablic ma operacja wyszukiwania, która
jest wykonywana powtarzalnie, bardzo wiele razy. Nawet dla tablic o umiarkowanych
wielkościach, dla których asymptotyczny czas wykonywania operacji niekoniecznie jest
kluczowy, liczy się maksymalna sprawność ich obsługi, głównie operacji wyszukiwania.

Ponieważ drzewa BST są uporządkowane, sprawność wyszukiwania kluczy powinna być
na poziomie wyszukiwania binarnego w tablicach uporządkowanych, czyli O(log n).
Jednak widzieliśmy, że liczba kroków w przeszukiwaniu drzew BST jest O(h), gdzie h
jest wysokością drzewa binarnego, która może wynosić od log2 n do n.

Bardzo ważną kwestią jest więc jak zapewnić, by wysokość budowanych drzew BST
wynosiła log2 n, a przynajmniej O(log2 n).

Drzewa zrównoważone AVL 1

Optymalne drzewa BST
Tablice symboli mogą być budowane dynamicznie, ale w szeregu zastosowań tablica
jest budowana jednorazowo, i potem tylko wykorzystywana w trybie read-only (np.
książka telefoniczna). Ponadto, w wielu zastosowaniach struktura jest tylko budowana
i potem wykorzystywana — operacja usuwania nie jest w ogóle potrzebna.

W tych przypadkach można wziąć pod uwagę rozkład częstotliwości wyszukiwania
kluczy, i zbudować drzewo, które zminimalizuje oczekiwany czas wyszukiwania klucza
z tego konkretnego rozkładu. Gdy te najczęściej wyszukiwane klucze znajdą się blisko
korzenia drzewa BST, skróceniu ulegnie czas tych najczęściej wykonywanych
wyszukiwań, kosztem rzadko wyszukiwanych kluczy, które mogą być zlokalizowane
w liściach, nawet w dłuższych gałęziach drzewa.

Nie interesuje nas już zatem najgorszy przypadek wyszukiwania, i nie będziemy
próbowali zapewnić by wysokość drzewa była utrzymana w granicach O(log2 n).
Zamiast tego, globalnej optymalizacji podlega jedynie średni czas wyszukiwania zgodny
z przyjętym rozkładem prawdopodobieństwa wyszukiwania kluczy.

Jednak tutaj nie będziemy rozważali metod budowy optymalnych drzew BST zgodnych
z tymi założeniami (patrz np. podrozdział 14.p w podręczniku CLRS). Zamiast tego
zajmiemy się zagadnieniami budowy prawdziwie dynamicznych drzew binarnych.

Drzewa zrównoważone AVL 2

Średnia/oczekiwana wysokość drzewa BST

Można udowodnić, że dla danego zbioru kluczy, oczekiwana wysokość drzewa BST
zbudowanego podstawową procedurą Tree-Insert, uśredniona po wszystkich
permutacjach tego zbioru kluczy, wynosi O(log2 n).

Może to sprawiać wrażenie, że dla celów zastosowań, gdzie istotny jest średni
przypadek czasu działania programu, zwykła procedura budowy drzewa BST jest
wystarczająca, i nie musimy rozważać przypadku najgorszego. Jednak nie jest to do
końca prawda. Jeśli chcemy uśredniać po wszystkich budowanych drzewach to owszem,
średnie drzewo będzie miało wysokość O(log2 n). Jednak jeśli w konkretnym
zastosowaniu, konkretny program zbuduje drzewo zdegenerowane, o wysokości Ω(n),
to w tej aplikacji oczekiwany czas operacji wyszukiwania będzie Ω(n).

Jeśli więc chcemy mieć pewność, że średni przypadek wyszukiwania w programie
budującym dynamicznie drzewo BST będzie działał w czasie O(log2 n) to musimy
zapewnić, by drzewo w każdym przypadku miało wysokość O(log2 n).

Drzewa zrównoważone AVL 3

Drzewa zrównoważone

Drzewo BST zawierające n węzłów
o wysokości dokładnie h = ⌈log2(n + 1)⌉ − 1
nazywamy (w pełni) zrównoważonym.

n=1 h=0 ·
n=2,3 h=1 .· ∴

n=4,5,6,7 h=2 ...

Budowa w pełni zrównoważonych drzew BST jest niepraktyczna. Nie są znane żadne
efektywne algorytmy budowy takich drzew. Każdy algorytm jest praktycznie
równoważny zbudowaniu wszystkich możliwych drzew z wszystkich permutacji ciągu
wejściowego i wybraniu drzewa o minimalnej wysokości!

Zamiast tego, badania koncentrują się nad wynalezieniem efektywnych algorytmów
budowy drzew częściowo zrównoważonych, to znaczy takich, których wysokość
będzie O(log2 n).

Drzewa zrównoważone AVL 4

Drzewa AVL

Drzewo BST nazywamy drzewem AVL o ile wysokość dwóch poddrzew dowolnego
węzła nie różni się o więcej niż 1, w całym drzewie.

Przykładowe drzewo AVL:
��
��
M����������

PPPPPPPPPP��
��
D

�
�

�
�

Q
Q
Q
Q

��
��
C ��

��
H

�
��

S
SS

��
��
F ��

��
K

��
��
S

Q
Q

Q
Q

��
��
Z

„Zdegenerowane” drzewa AVL: h h
A
AAh

h
�

��
A
AAh h
A
AAh

h
�
��

A
AAh

C
CCh

h
�
��

A
AAh h
A
AAh

h
�

��
A
AAh

�
��

C
CCh h
C
CCh

h
�
��

A
AAh

C
CCh

h
�
��
A
AAh h
A
AAh

Drzewa zrównoważone AVL 5

Ponieważ drzewa AVL są pełnoprawnymi drzewami BST, zatem procedury
przeszukiwania na drzewach AVL nie różnią się od przeszukiwania na zwykłych
drzewach BST.

Jednak jeśli chodzi o kwestię budowania i obsługi (dodawania i usuwania elementów),
to pojawiają się jednak dwa istotne pytania:

• Czy przeszukiwanie na drzewach AVL nadal będzie średnio O(log n)?

• Czy istnieje (względnie) łatwa metoda budowy takich drzew?

Najpierw zajmiemy się odpowiedzią na drugie z tych pytań.

Drzewa zrównoważone AVL 6

Dodawanie/usuwanie węzła do/z drzewa AVL
Procedury dodawania i usuwania węzłów z drzew AVL można zbudować przez pewne
modyfikacje procedur dla drzew BST. Istotnym elementem ułatwiającym wykonanie
tych operacji jest dodanie do każdego węzła drzewa pola balance o wartości:

−1 — oznacza, że lewe poddrzewo węzła jest wyższe (o 1)
0 — oznacza, że oba poddrzewa węzła są w pełnej równowadze

+1 — oznacza, że prawe poddrzewo węzła jest wyższe (o 1)

Przy dodawaniu węzła z do drzewa, z punktu widzenia węzła na danym poziomie
drzewa, mogło zdarzyć się, że poddrzewo, do którego węzeł z trafił: zyskało
dodatkowy poziom, czyli jego wysokość jest teraz +1, lub nie zyskało na wysokości.
(Przy usuwaniu węzła, poddrzewo mogło stracić jeden poziom wysokości, lub nie.)

Gdy poddrzewo nie zyskało (lub nie straciło) na wysokości, to z punktu widzenia tego
węzła — jak również wszystkich innych węzłów powyżej, aż do samego korzenia — nie
ma zmian w zrównoważeniu drzewa (własność AVL), zatem procedura
dodawania/usuwania węzła może na tym się zakończyć.

Również gdy poddrzewo zyskało na wysokości, ale wcześniej było niższe niż jego
bliźniak (albo straciło, ale wcześniej było wyższe), to również własność AVL pozostaje
zachowana (wzwyż aż do korzenia), i trzeba tylko odnotować w tym węźle osiągnięcie
pełnej równowagi (balance = 0).

Drzewa zrównoważone AVL 7

Drzewa AVL — rotacje
Jedynym przypadkiem, kiedy drzewo AVL mogło stracić własność AVL jest sytuacja,
kiedy z punktu widzenia jakiegoś węzła drzewa, jego poddrzewo do którego został
dodany węzeł zyskało na wysokości, a już wcześniej było wyższe (lub straciło, a było
niższe). Taka sytuacja wymaga korekty struktury drzewa dla przywrócenia własności
AVL.

Do przywracania własności AVL przydatna będzie operacja rotacji:

prawa rotacja

lewa rotacja

K4

K2

D1 D3

D5

K2

K4

D5D3

D1

h

h−1

Istotną własnością rotacji jest fakt, że z punktu widzenia całej reszty drzewa (powyżej
węzłów K2/K4), wysokość drzewa na którym wykonano rotację się nie zmienia. Nic się
również nie zmienia w ramach poddrzew D1, D3, i D5.

Drzewa zrównoważone AVL 8

Drzewa AVL — korekta zrównoważenia: pojedyncza rotacja
Korekty naruszenia własności AVL rozważymy w dwóch przypadkach. Pierwszym
przypadkiem jest, kiedy naruszenie nastąpiło w skrajnym poddrzewie drzewa, którego
wysokość się zwiększyła:

prawa rotacja

lewa rotacja

h

h−1

h+1

D1 D3

D5

K4

K2

K2

D1

D3 D5

K4

Patrząc z lewej do prawej, naruszenie nastąpiło w lewym poddrzewie węzła K4,
i przyrosło tam lewe poddrzewo D1 tego lewego poddrzewa K2 (dodany został węzeł
czerwony). Alternatywnie, patrząc z prawej do lewej, jeśli naruszenie nastąpiło
w prawym poddrzewie K4 danego węzła K2, to rozważamy przypadek, kiedy wydarzyło
się to w prawym poddrzewie prawego poddrzewa (dodany został węzeł niebieski).

Jak widać, po wykonaniu rotacji równowaga całego (pod)drzewa została przywrócona.

Drzewa zrównoważone AVL 9

Drzewa AVL — korekta zrównoważenia: podwójna rotacja
Drugim przypadkiem jest sytuacja, kiedy — z punktu widzenia danego węzła drzewa
— nastąpiło naruszenie własności AVL w jednym z jego poddrzew, ale w tym
poddrzewie wydarzyło się to w jego poddrzewie „wewnętrznym”.

Inaczej mówiąc, jeśli z punktu widzenia danego węzła naruszenie nastąpiło
w poddrzewie lewym, to w tym lewym poddrzewie miało to miejsce w jego poddrzewie
prawym. A jeśli naruszenie nastąpiło w poddrzewie prawym, to w tym poddrzewie było
to w jego poddrzewie lewym.

Poniższy rysunek ilustruje tylko pierwszą z tych sytuacji (naruszenie w prawym
poddrzewie lewego poddrzewa danego węzła). Drugą sytuację można otrzymać przez
lustrzane odbicie rysunku.

lewa rotacja prawa rotacja

h

h−1

h+1

D3

K6

K2

K4

D1 D5

D7

K6

D7D5

D3

D1

K2

K4

D1

D3 D5

D7

K4

K2 K6

W tym przypadku konieczne są dwie rotacje: lewa+prawa, dla przywrócenia równowagi.

Drzewa zrównoważone AVL 10

Dodawania węzła do drzewa AVL — pseudokod

Drzewa zrównoważone AVL 11

Drzewa zrównoważone AVL 12

Podsumowanie — drzewa częściowo zrównoważone

Wysokość drzewa w przypadku:
Drzewa: najgorszym najlepszym średnim

binarne BST:
w pełni zrównoważ. log2(N + 1) log2(N + 1) log2(N + 1)
niezrównoważone N log2(N + 1) 1.39 × log2(N)
drzewa AVL 1.44 × log2(N) log2(N + 1) log2(N) + 0.25
drzewa WAVL
czerwono-czarne 2 × log2(N)

niebinarne ST:
drzewa 2-3
B-drzewa logD+1(N+1

2) + 1 log2D+1(N + 1) log1.38D+1(N
D+1) + 1

Drzewa zrównoważone AVL 13

Drzewa zrównoważone AVL 14

Drzewa czerwono-czarne

Drzewa zrównoważone AVL 15

