
Wstęp: obliczanie liczb Fibonacciego

Rozważmy problem obliczania liczb Fibonacciego. Pierwsze dwie liczby Fibonacciego są
równe 1, a każda kolejna jest sumą dwóch poprzednich. Sekwencja liczb Fibonacciego:
(0,) 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, ...

Kod do obliczania liczb Fibonacciego wprost z definicji:

Fibo-Recur(n)
1 if n < 1 // for completeness
2 return 0
3 elseif n == 1
4 return 1
5 else return Fibo-Recur(n − 2) + Fibo-Recur(n − 1)

Liczby Fibonacciego nie rosną jakoś astronomicznie szybko, jednak ich obliczanie przy
użyciu powyższej procedury okazuje się bardzo nieefektywne.

Programowanie dynamiczne — obliczanie liczb Fibonacciego 1



Liczby Fibonacciego — podwójna rekurencja

Przykładowe obliczenia:

% time python3 fibo_recur.py 40
Computing 40th Fibonacci number ...
= 102334155

real: 0m12.930s, user: 0m12.921s, sys: 0m0.009s

% time python3 fibo_recur.py 50
Computing 50th Fibonacci number ...
= 12586269025

real: 43m5.903s, user: 43m5.828s, sys: 0m0.004s

Dlaczego obliczenie 50-tej kolejnej liczby Fibonacciego zajmuje tak dużo czasu CPU?
Przyczyną jest podwójna rekurencja. Niewinnie wyglądające podwójne wywołanie
rekurencyjne generuje lawinę wywołań, z których większość jest powtórzeniami:

Programowanie dynamiczne — obliczanie liczb Fibonacciego 2



Liczby Fibonacciego — rozwiązanie iteracyjne
Oczywiście tej podwójnej rekurencji możnaby łatwo uniknąć zamieniając algorytm
rekurencyjny na iteracyjny:

Fibo-Iter(n)
1 if n < 1 // for completeness
2 return 0
3 elseif n == 1
4 return 1
5 fib2 = 0
6 fib1 = 1
7 for i = 2 to n
8 fib0 = fib1 + fib2
9 fib2 = fib1

10 fib1 = fib0
11 return fib0

% time python3 fibo_iter.py 50
Computing 50th Fibonacci number ...
= 12586269025

real: 0m0.028s, user: 0m0.016s, sys: 0m0.012s

Programowanie dynamiczne — obliczanie liczb Fibonacciego 3



Ale teraz możemy naprawdę poszaleć:

% time python3 fibo_iter.py 500
Computing 500th Fibonacci number ...
= 1394232245616978801397243828704072839500702565876973072641089629483255716\
22863290691557658876222521294125
real: 0m0.028s, user: 0m0.020s, sys: 0m0.008s

% time python3 fibo_iter.py 5000
Computing 5000th Fibonacci number ...
= 387896845438832563370191630832590531208212771464624510616059721489555013\

904403709701082291646221066947929345285888297381348310200895498294036143015\
691147893836421656394410691021450563413370655865623825465670071252592990385\
493381392883637834751890876297071203333705292310769300851809384980180384781\
399674888176555465378829164426891298038461377896902150229308247566634622492\
307188332480328037503913035290330450584270114763524227021093463769910400671\
417488329842289149127310405432875329804427367682297724498774987455569190770\
388063704683279481135897373999311010621930814901857081539785437919530561751\
076105307568878376603366735544525884488624161921055345749367589784902798823\
435102359984466393485325641195222185956306047536464547076033090242080638258\
492915645287629157575914234380914230291749108898415520985443248659407979357\
131684169286803954530954538869811466508206686289742063932343848846524098874\
239587380197699382031717420893226546887936400263079778005875912967138963421\
4252579116872755600360311370547754724604639987588046985178408674382863125
real: 0m0.029s, user: 0m0.013s, sys: 0m0.016s

Programowanie dynamiczne — obliczanie liczb Fibonacciego 4



Liczby Fibonacciego — spamiętywanie

Rozwiązanie iteracyjne ma nie tylko przewagę polegającą na uniknięciu lawiny
podwójnych rekurencji, ale ogólnie rozwiązania rekurencyjne wprowadzają
w wykonywaniu programów dodatkowe narzuty na wywołania procedur, a w niektórych
przypadkach długi łańcuch wywołań rekurencyjnych może przepełnić zakres pamięci
zarezerwowany dla stosu.

Jednak rozwiązania rekurencyjne mają pewne zalety — bardzo często są bardziej
czytelne i prostsze, czego obliczanie liczb Fibonacciego jest dobrym przykładem.
Często gotowi bylibyśmy pogodzić się z dodatkowym narzutem wywołań
rekurencyjnych, i przynajmniej na początkowym etapie eksperymentalnego
uruchamiania programu posłużyć się czytelnym i prostym rozwiązaniem rekurencyjnym.

W przypadku liczb Fibonacciego nie sam mechanizm rekurencji był problemem, ale ich
lawinowe duplikowanie. Jednak można uniknąć tego lawinowego duplikowania przez
prosty zabieg polegający na zapamiętywaniu już raz obliczonych liczb Fibonacciego
w tablicy globalnej, i unikaniu dublowanych obliczeń przez odczytanie rozwiązań
z tablicy. Takie rozwiązanie nazywane jest spamiętywaniem (ang. memoization).

Programowanie dynamiczne — obliczanie liczb Fibonacciego 5



Fibo-Recur-Memo(n)
1 if n < 1 // for completeness
2 return 0
3 elseif n == 1
4 return 1
5 elseif n in fibotab
6 return fibotab[n]
7 fib2 = Fibo-Recur-Memo(n − 2)
8 fib1 = Fibo-Recur-Memo(n − 1)
9 fibotab[n] = fib1 + fib2

10 return fibotab[n]

% time python3 fiboe_recur_memo.py 50
Computing 50th Fibonacci number ...
= 12586269025

real: 0m0.029s, user: 0m0.020s, sys: 0m0.008s

% time python3 fiboe_recur_memo.py 500
Computing 500th Fibonacci number ...
= 139423224561697880139724382870407283950070256587697307264108962948325571\

622863290691557658876222521294125
real: 0m0.029s, user: 0m0.017s, sys: 0m0.013s

Programowanie dynamiczne — obliczanie liczb Fibonacciego 6



% time python3 fiboe_recur_memo.py 50000
Computing 50000th Fibonacci number ...
= 107777348930729747802790388551194808296251067694115797849023092100327447\

353646523049848844402047602984931943328327405495330753981733048306741483538\
717555454051984462008734642493807232582130167019081198825161861495958608540\
993737510653044874463782996851389325663668163313173204591893189886313559961\
265561554638976403055715140539792260124322730482900071690886378620675517700\
832269328087849866274058836537593758274508704744192976808834961311297128859\
...
013608175009331914291885808751962605458474604194206257224753676742372629234\
677631054260685497191783786688197868052125761772640409495112155761882698223\
668381539682186867629262907557205675103732451647568429444236992124912404874\
642815806867508067244510645124441922343362518137645828033764612095719936197\
364556462149210633588703081823042665930493669537680372203970374907819690111\
266524020297618305364252373553125
real: 0m0.088s, user: 0m0.030s, sys: 0m0.056s

W powyższym wyniku 50000-ta liczba Fibonacciego ma 10450 cyfr i przy
standardowych ustawieniach interpretera Pythona jej obliczenie przepełnia pojemność
stosu wywołań procedur, oraz standardowe ustawienia konwersji liczb nieograniczonej
precyzji na stringi. Ale oczywiście te ustawienia można powiększyć, i zasadniczo 50000
wywołań funkcji nie jest niczym przerażającym dla współczesnego komputera, czego
dowodzi całkowity czas obliczeń poniżej 90 milisekund.

Programowanie dynamiczne — obliczanie liczb Fibonacciego 7



Liczby Fibonacciego — jeszcze raz rozwiązanie iteracyjne

Ideę spamiętywania można również wykorzystać w rozwiązaniu iteracyjnym:

Fibo-Iter-Memo(n)
1 if n < 1
2 fibotab[0] = 0
3 elseif n == 1
4 fibotab[1] = 1
5 for i = 2 to n
6 fibotab[i] = fibotab[i − 1] + fibotab[i − 2]
7 return fibotab[n]

To rozwiązanie niekoniecznie jest dobre pod względem informatycznym, ponieważ
zamienia kilka operacji przypisania do dwóch dodatkowych zmiennych na tablicę
zawierającą wszystkie kolejne liczby Fibonacciego.
Jednak ma ono istotną zaletę — wykorzystuje wprost wzór definicyjny na liczbę
Fibonacciego i nie wymaga jego konwersji na procedurę iteracyjną. Jak wkrótce
zobaczymy, nie dla każdego zagadnienia taka konwersja jest równie prosta jak w tym
przypadku. Zastosowanie spamiętywania bardzo ułatwia implementację tego podejścia.
Z kodu algorytmu wynika również jasno, że działa on w czasie Θ(n).

Programowanie dynamiczne — obliczanie liczb Fibonacciego 8



Inny problem - rozkrój pręta

Aby lepiej przybliżyć się do idei programowania dynamicznego rozważmy teraz pewne
zagadnienie praktyczne. Chodzi o optymalny rozkrój pręta stalowego. Załóżmy, że
pręty stalowe dostępne są hurtowo w pewnej standardowej długości, i rozważamy opcje
sprzedawania ich w całości, lub po pocięciu na mniejsze odcinki. Przyjmując, że znamy
ceny handlowe wszystkich możliwych długości pręta, i że możemy dowolne cięcia
wykonać tanio (dokładnie przyjmujemy koszt cięcia równy zero), zależy nam na
maksymalizacji zysku, czyli sumy wartości prętów pociętych minus cena oryginalnego
pręta pełnej długości. Jest możliwe, że cena pręta pełnej długości jest na tyle duża, że
nie opłaca się w ogóle go ciąć.

Dokładniej, mając pręt długości n i tabelę cen pi dla i = 1, 2, . . . , n wyznacz
maksymalną wartość rn rozkroju tego pręta i sprzedaży w kawałkach
całkowitoliczbowej długości.
Dla pewnych cen możliwe jest rozwiązanie bez rozkroju, to znaczy rn = pn.

Ponieważ w każdym punkcie i pomiędzy 1 a n − 1 mamy możliwość cięcia lub
niecięcia, tych możliwości razem jest 2n−1. Zapisując rozwiązania jako sumy długości
kawałków, jeśli optymalnym rozwiązaniem jest pocięcie pręta na k kawałków długości
n = i1 + i2 + · · · + ik to wartość tego rozwiązania jest rn = pi1 + pi2 + · · · + pik.

Programowanie dynamiczne — rozkrój pręta 9



Rozkrój pręta — przykład

Przykładowa tabela cen i poniżej opcje rozkroju pręta o długości 4 z wartościami
poszczególnych kawałków:

długość i 1 2 3 4 5 6 7 8 9 10
cena pi 1 5 8 9 10 17 17 20 24 30

Jak widać na rysunku, optymalny rozkrój uzyskujemy w przypadku (c) o wartości
r4 = 10.

Programowanie dynamiczne — rozkrój pręta 10



Rozkrój pręta — analiza

Ponownie przyjmując przykładową tabelę cen rozkroju:

długość i 1 2 3 4 5 6 7 8 9 10
cena pi 1 5 8 9 10 17 17 20 24 30

możemy obliczyć optymalne rozwiązania dla różnych wyjściowych długości pręta:

r1 = 1 dla rozwiązania 1 = 1 (bez cięcia)
r2 = 5 dla rozwiązania 2 = 2 (bez cięcia)
r3 = 8 dla rozwiązania 3 = 3 (bez cięcia)
r4 = 10 dla rozwiązania 4 = 2 + 2
r5 = 13 dla rozwiązania 5 = 2 + 3
r6 = 17 dla rozwiązania 6 = 6 (bez cięcia)
r7 = 18 dla rozwiązania 7 = 1 + 6 lub 7 = 2 + 2 + 3
r8 = 22 dla rozwiązania 8 = 2 + 6
r9 = 25 dla rozwiązania 9 = 3 + 6

r10 = 30 dla rozwiązania 10 = 10 (bez cięcia)

Programowanie dynamiczne — rozkrój pręta 11



Rozkrój pręta — dekompozycja na podproblemy

Ogólnie, możemy zapisać wartość rozwiązania dla długości n za pomocą rozwiązań dla
krótszych odcinków:

rn = max{pn, r1 + rn−1, r2 + rn−2, . . . , rn−1 + r1}

Sens powyższego wzoru jest następujący: rozwiązanie optymalne wymaga 0 cięć
(pierwszy wyraz we wzorze na maksimum), bądź wymaga co najmniej jednego cięcia na
kawałki długości i oraz n − i, i dalszego optymalnego rozkroju otrzymanych kawałków.

Inaczej mówiąc, możemy rozwiązać problem rozkroju dla wszystkich możliwych
wariantów pierwszego cięcia (od 1 do n − 1 w powyższym wzorze na max), i mając
wartości ich optymalnych rozwiązań, wybrać optymalną sumę, lub brak cięcia (pierwszy
wyraz pn w powyższym wzorze).

W takiej sytuacji, gdy optymalne rozwiązanie problemu zawiera w sobie optymalne
rozwiązania podproblemów, które można rozwiązać niezależnie, mówimy, że problem
ma optymalną podstrukturę.

Programowanie dynamiczne — rozkrój pręta 12



Rozkrój pręta — pseudokod rozwiązania
Dekompozycję problemu cięcia na podproblemy, wynikającą z powyższego wzoru,
i wymagającą rozwiązania kaskady podproblemów, możemy nieco uporządkować
i uprościć, uwzględniając pierwsze cięcie na odcinek długości i, oraz resztę pręta n − i,
dla którego trzeba znaleźć optymalne rozwiązanie rn−i:

rn = max{pi + rn−i : 1 ≤ i ≤ n}

Przypadek bez cięcia otrzymujemy dla i = n i r0.

W tym ujęciu optymalne rozwiązanie uzyskujemy po podziale i rozwiązaniu tylko
jednego podproblemu. Możemy to wyrazić pseudokodem:

Cut-Rod(p, n)
1 if n == 0
2 return 0
3 q = −∞
4 for i = 1 to n
5 q = max{q, p[i] + Cut-Rod(p, n − i)}
6 return q

Programowanie dynamiczne — rozkrój pręta 13



Pseudokod procedury Cut-Rod wygląda niewinnie, jakby z pojedynczym wywołaniem
rekurencyjnym, ale niestety, to wywołanie znajduje się w pętli, a więc naprawdę jest to
lawina wywołań rekurencyjnych.

Drzewo wywołań rekurencyjnych dla n = 4:

Próba użycia tego rozwiązania dla wartości n ≥ 40 okazuje się bardzo nieefektywna.
Czy to nam się z czymś kojarzy? Fibonacci?
Spamiętywanie na pomoc?

Programowanie dynamiczne — rozkrój pręta 14



Programowanie dynamiczne — podejście zstępujące

Memoized-Cut-Rod(p, n)
1 let r[0 : n] be a new array // will remember solution values in r
2 for i = 0 to n
3 r[i] = −∞
4 return Memoized-Cut-Rod-Aux(p, n, r)

Memoized-Cut-Rod-Aux(p, n, r)
1 if r[n] ≥ 0 // already have a solution for length n?
2 return r[n]
3 if n == 0
4 q = 0
5 else q = −∞
6 for i = 1 to n // i is the position of the first cut
7 q = max{q, p[i] + Memoized-Cut-Rod-Aux(p, n − i, r)}
8 r[n] = q // remember the solution value for length n
9 return q

To rozwiązanie łączy rekurencję ze spamiętywaniem, i zastępuje pierwotne rozwiązanie
o eksponencjalnym czasie działania Θ(2n) rozwiązaniem o czasie kwadratowym Θ(n2).

Programowanie dynamiczne — rozkrój pręta 15



Programowanie dynamiczne — podejście wstępujące

Możliwe jest również podejście alternatywne. Zamiast dzielić i rządzić, możemy
zastosować podejście analogiczne do iteracyjnego obliczania liczb Fibonacciego,
i skonstruować kompletną tabelę r[0 : n] rozwiązań optymalnych wszystkich długości
pręta aż do n, i na końcu zwrócić r[n]. Rozwiązanie jest proste ponieważ ponownie
wykorzystuje spamiętywanie:

Bottom-Up-Cut-Rod(p, n)
1 let r[0 : n] be a new array // will remember solution values in r
2 r[0] = 0
3 for j = 1 to n // for increasing rod length j
4 q = −∞
5 for i = 1 to j // i is the position of the first cut
6 q = max{q, p[i] + r[j − i]}
7 r[j] = q // remember the solution value for length j
8 return r[n]

W tym rozwiązaniu widać wyraźnie jego Θ(n2) czas działania.

Programowanie dynamiczne — rozkrój pręta 16



Programowanie dynamiczne — podsumowanie

W programowaniu dynamicznym ważne jest jasne zdefiniowanie podproblemów,
których rozwiązania składają się na rozwiązanie problemu podstawowego, oraz
zależności pomiędzy podproblemami i ich rozwiązaniami.

Te podproblemy i ich zależności można przedstawić na grafie
podproblemów. Rysunek przedstawia graf podproblemów dla
rozkroju pręta przy n = 4. Węzły grafu odpowiadają podproblemom,
a łuki skierowane łączą jeden podproblem z innym podproblemem,
którego rozwiązanie wpływa na rozwiązanie pierwszego podproblemu.
W podejściu zstępującym (top-down) rozwiązując ten pierwszy
podproblem rekurencyjnie wywołujemy rozwiązanie drugiego
podproblemu. Graf jest w istocie spłaszczonym drzewem wywołań
rekurencyjnych, które przez spamiętywanie zostały zredukowane do
pojedynczego wywołania.

W podejściu wstępującym (bottom-up) łuk dla każdego podproblemu wskazuje inne
podproblemy, które muszą być rozwiązane zanim będzie możliwe skonstruowanie
rozwiązanie pierwotnego problemu.

Programowanie dynamiczne — rozkrój pręta 17



Programowanie dynamiczne — rozkrój pręta 18



Rozkrój pręta — zapomniany szczegół
W problemie rozkroju pręta pozostał jeden szczegół do uzupełnienia. Przedstawione
algorytmy obliczają jedynie koszt optymalnego rozwiązania, ale nie dają wskazówek jak
kroić pręt. Można w tym celu uzupełnić procedurę Bottom-Up-Cut-Rod, aby
generowała nie tylko koszty, ale również odpowiadające im miejsce (pierwszego) cięcia
(bo tak działa uproszczony rekurencyjny schemat rozwiązania problemu rozkroju):

i 0 1 2 3 4 5 6 7 8 9 10
r[i] 0 1 5 8 10 13 17 18 22 25 30
s[i] 1 2 3 2 2 6 1 2 3 10

Aby uzyskać miejsca kolejnych cięć należy obliczyć długość reszty pręta pozostałej po
pierwszym cięciu, i dla niej odnaleźć w tabelce miejsce kolejnego „pierwszego” cięcia.

Na przykład, dla n = 7 pierwsze cięcie wypada w miejscu i = 1, a dla reszty pręta
długości n = 6 miejscem cięcia jest i = 6, co oznacza brak cięcia.

Uzupełniona procedura Bottom-Up-Cut-Rod jak również pomocnicza procedura
wyświetlająca wszystkie miejsca cięcia przedstawione są poniżej.

Programowanie dynamiczne — rozkrój pręta 19



Extended-Bottom-Up-Cut-Rod(p, n)
1 let r[0 : n] and s[1 : n] be new arrays
2 r[0] = 0
3 for j = 1 to n // for increasing rod length j
4 q = −∞
5 for i = 1 to j // i is the position of the first cut
6 if q < p[i] + r[j − i]
7 q = p[i] + r[j − i]
8 s[j] = i // best cut location so far for length j
9 r[j] = q // remember the solution value for length j

10 return r and s

Print-Cut-Rod-Soution(p, n)
1 (r, s) = Extended-Bottom-Up-Cut-Rod(p, n)
2 while n > 0
3 print s[n] // cut location for length n
4 n = n − s[n] // length of the remainder of the rod

Programowanie dynamiczne — rozkrój pręta 20



Optymalne drzewa przeszukiwań BST

Jako przykład nieco trudniejszego algorytmu, wykorzystującego programowanie
dynamiczne, rozważymy algorytm budowania optymalnych drzew przeszukiwań BST.
Dla przypomnienia, optymalnym drzewem przeszukiwań dla sekwencji kluczy
k1, k2, . . . , kn, ze znanym rozkładem prawdopodobieństw ich wyszukiwania
p1, p2, . . . , pn, nazywamy binarne drzewo przeszukiwań, które zapewnia minimalną
oczekiwaną liczbę kroków przeszukiwania spośród wszystkich możliwych binarnych
drzew przeszukiwań (uporządkowanych) zawierających te klucze.

Ta definicja wymaga pewnego uzupełnienia. Chcemy dopuścić możliwość, by na
drzewie wykonywane były również wyszukiwania wartości nienależących do sekwencji
kluczy (czyli wyszukiwań zakończonych porażką), i znamy również rozkład
prawdopodobieństw takich wyszukiwań. Chcemy by drzewo było optymalne również dla
wyszukiwania tych wartości, które nazwiemy tutaj niekluczami (ang. dummy key ;
w polskim tłumaczeniu podręcznika CLRS nieklucze nazywane są kluczami-imitacjami).

Nieklucze nie mają konkretnych wartości, jak klucze, np. liczbowych. Dla sekwencji n
kluczy k1, k2, . . . , kn przyjmujemy odpowiednią sekwencję niekluczy d0, d1, d2, . . . , dn.
Nieklucz d0 reprezentuje wszystkie wartości mniejsze od klucza k1, nieklucz dn

reprezentuje wszystkie wartości większe od kn, natomiast dla (i = 1, 2, . . . , n − 1)
każdy nieklucz di reprezentuje wartości pomiędzy ki i ki+1.

Programowanie dynamiczne — optymalne drzewa przeszukiwań 21



Z założenia, dla sekwencji n kluczy k1, k2, . . . , kn znamy rozkład prawdopodobieństwa
ich wyszukiwań dany sekwencją prawdopodobieństw p1, p2, . . . , pn. Ale dla tej
sekwencji kluczy mamy wynikającą z niej sekwencję n + 1 niekluczy d0, d1, d2, . . . , dn

i odpowiadający jej rozkład prawdopodobieństw wyszukiwania odpowiednich niekluczy,
które oznaczymy q0, q1, q2, . . . , qn. To znaczy, prawdopodobieństwo wyszukania
nieklucza di wynosi qi. A ponieważ każde wyszukiwanie odnosi się albo do jednego
z kluczy, albo do jednego z niekluczy, to mamy:

n∑
i=1

pi +
n∑

i=0
qi = 1

Wykorzystując znane rozkłady prawdopodobieństw możemy obliczyć oczekiwany koszt
wyszukiwania w danym drzewie T. Zakładamy, że rzeczywisty koszt dowolnego
wyszukiwania jest równy liczbie sprawdzonych wierzchołków drzewa, który jest równy
głębokości znalezionego wierzchołka w drzewie, plus 1. Na przykład, gdy poszukiwany
(i znaleziony) był korzeń drzewa, na głębokości 0, to koszt wyszukiwania jest 1.

ET [koszt wyszuk.] =
n∑

i=1
(depthT (ki) + 1) · pi +

n∑
i=0

(depthT (di) + 1) · qi

= 1 +
n∑

i=1
depthT (ki) · pi +

n∑
i=0

depthT (di) · qi

Programowanie dynamiczne — optymalne drzewa przeszukiwań 22



Własności optymalnego drzewa przeszukiwań BST
Zauważmy najpierw, że w wynikowym drzewie klucze powinny być wewnętrznymi
węzłami, a nieklucze liśćmi. Wynika to z faktu, że nieklucze nie mają konkretnych
wartości, ich jakby nie ma w drzewie, one tylko wyłapują nieudane poszukiwania.

Następnie zauważmy, że problem budowy optymalnego BST ma optymalną
podstrukturę, to znaczy, jeśli istnieje optymalne BST T dla pewnego zestawu kluczy,
i zawiera ono w sobie poddrzewo T ′ zakorzenione w jakimś węźle kr i zawierające
klucze ki, . . . , kj i nieklucze di−1, . . . , dj, to poddrzewo T ′ musi być optymalne dla
tego zestawu kluczy i niekluczy. Albowiem gdyby nie było ono optymalne, a optymalne
było inne poddrzewo T ′′ z tymi samymi kluczami i niekluczami, o niższym
oczekiwanym czasie wyszukiwania, to możnaby tym poddrzewem T ′′ zastąpić T ′

w drzewie T i w ten sposób zmniejszyć oczekiwany czas wyszukiwania w drzewie T .

Zwróćmy jeszcze uwagę na pewną cechę poddrzew „pustych”. Gdyby korzeniem
(pod)drzewa zawierającego klucze ki, . . . , kj był klucz ki, to wszystkie klucze tego
poddrzewa znajdowałyby się w jego prawym poddrzewie, a lewe poddrzewo zawierałoby
0 kluczy, a więc było „puste”. Jednak zawierałoby ono wtedy jeden nieklucz di−1.

A więc możemy o poddrzewach zawierających 0 kluczy myśleć jako o „pustych”,
jednak będą one w istocie zawierały jeden liść z niekluczem.

Programowanie dynamiczne — optymalne drzewa przeszukiwań 23



Przykład dla n = 5 kluczy:
i 0 1 2 3 4 5

pi 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

Programowanie dynamiczne — optymalne drzewa przeszukiwań 24



Budowa optymalnego drzewa przeszukiwań BST

Chcemy skonstruować algorytm budowy optymalnego drzewa BST za pomocą budowy
jego optymalnych poddrzew. Podproblemem jest budowa drzewa optymalnego dla
sekwencji kluczy ki, . . . , kj, gdzie i ≥ 1, j ≤ n, j ≥ i − 1 (przypadek j = i − 1 jest
przypadkiem pustego poddrzewa).
Oznaczamy przez e[i, j] oczekiwany koszt wyszukiwania w optymalnym drzewie
zawierającym klucze ki, . . . , kj. Algorytm obliczy pełną tablicę e[i, j] dla
j ≥ i − 1, i = 1, . . . , n + 1, j = 0, . . . , n (rozszerzone zakresy wartości uwzględniają
sekwencje puste kluczy, generujące „puste” poddrzewa z pojedynczymi niekluczami).
Skrajne przypadki „pustych” poddrzew uzyskujemy dla każdej pary j = i − 1 gdzie
kosztem przeszukiwania jest prawdopodobieństwo dostępu do nieklucza, czyli
e[i, i − 1] = qi−1 .
Dla j ≥ i będziemy rozważali wszystkie możliwe korzenie kr poddrzewa dla sekwencji
ki, . . . , kj, gdzie lewe poddrzewo będzie zawierało klucze ki, . . . , kr−1, a prawe
poddrzewo klucze kr+1, . . . , kj.
Dodatkowo będziemy wykorzystywali tablicę sum prawdopodobieństw:

w[i, j] =
n∑

i=1
pi +

n∑
i=0

qi

Programowanie dynamiczne — optymalne drzewa przeszukiwań 25



Dla obliczeń tablicy e[i, j] można wyprowadzić wzór:

e[i, j] =


qi−1 gdy j = i − 1
min{e[i, r − 1] + e[r + 1, j] + w(i, j) : i ≤ r ≤ j} gdy i ≤ j

Przedstawiony poniżej algorytm oblicza wszystkie wartości tablic e[i, j] i w[i, j]
(w podanych wyżej zakresach indeksów), i po jego zakończeniu za rozwiązanie
będziemy uważali wartość e[1, n].
Jednak aby ułatwić odtworzenie optymalnego drzewa odpowiadającego temu
rozwiązaniu, algorytm dodatkowo zbuduje tablicę root[i, j] dla i, j = 1, . . . , n, która
w każdej pozycji zawierać będzie indeks r korzenia kr optymalnego drzewa dla
podsekwencji kluczy ki, . . . , kj (zatem główny korzeń całego optymalnego drzewa BST
znajdziemy w pozycji root[1, n]).

Programowanie dynamiczne — optymalne drzewa przeszukiwań 26



Algorytm budowy optymalnych drzew BST

Optimal-BST(p, q, n)
1 let e[1 : n + 1, 0 : n], w[1 : n + 1, 0 : n], root[1 : n, 1 : n] be new tables
2 for i = 1 to n + 1 // base cases
3 e[i, i − 1] = qi−1
4 w[i, i − 1] = qi−1
5 for l = 1 to n
6 for i = 1 to n − l + 1
7 j = i + l − 1
8 e[i, j] = ∞
9 w[i, j] = w[i, j − 1] + pj + qj

10 for r = i to j // try all possible roots r
11 t = e[i, r − 1] + e[r + 1, j] + w[i, j] // see formula
12 if t < e[i, j]
13 e[i, j] = t
14 root[i, j] = r
15 return e, root

Jak widać, algorytm wykonuje trzy zagnieżdżone pętle w zakresie maksymalnie do n
i zatem działa w czasie Θ(n3).

Programowanie dynamiczne — optymalne drzewa przeszukiwań 27



Przykładowe drzewo BST — rozwiązanie

Programowanie dynamiczne — optymalne drzewa przeszukiwań 28



Krótkie podsumowanie — pytania sprawdzające

1. Napisz pseudokod procedury Display-Optimal-BST(root, n), która mając
daną tablicę root wypisze strukturę optymalnego drzewa BST.

2. Wyznacz koszt wyszukiwania i strukturę optymalnego drzewa BST dla zestawu
n = 7 kluczy z następującymi prawdopodobieństwami:

i 0 1 2 3 4 5 6 7
pi 0.04 0.06 0.08 0.02 0.10 0.12 0.14
qi 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

Programowanie dynamiczne — podsumowanie 29



Literatura i materiały pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Wprowadzenie do algorytmów, PWN, 2024, rozdział 14.

Programowanie dynamiczne — literatura 30


