Wstep: obliczanie liczb Fibonacciego

Rozwazmy problem obliczania liczb Fibonacciego. Pierwsze dwie liczby Fibonacciego s3
rowne 1, a kazda kolejna jest sumg dwoch poprzednich. Sekwencja liczb Fibonacciego:

(0,)1,1,2, 3,5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, ...

Kod do obliczania liczb Fibonacciego wprost z definic;ji:

F1BO-RECUR(n)

1 ifn<l1 // for completeness

2 return 0

3 elseif n ==

4 return 1

5 else return FIBO-RECUR(n — 2) + FIBO-RECUR(n — 1)

Liczby Fibonacciego nie rosng jako$ astronomicznie szybko, jednak ich obliczanie przy
uzyciu powyzszej procedury okazuje sie bardzo nieefektywne.

Programowanie dynamiczne — obliczanie liczb Fibonacciego 1

Liczby Fibonacciego — podwadjna rekurencja

Przyktadowe obliczenia:

% time python3 fibo_recur.py 40

Computing 40th Fibonacci number ...

= 102334155

real: Om12.930s, user: Om12.921s, sys: Om0.009s

% time python3 fibo_recur.py 50

Computing 50th Fibonacci number ...

= 12586269025

real: 43mb5.903s, user: 43mb.828s, sys: Om0.004s

Dlaczego obliczenie 50-tej kolejnej liczby Fibonacciego zajmuje tak duzo czasu CPU?
Przyczyna jest podwdjna rekurencja. Niewinnie wygladajace podwdjne wywotanie
rekurencyjne generuje lawine wywotan, z ktorych wiekszosc jest powtodrzeniami:

fib(7)
ibe) fib(5)
ib5) fib(4) fib{a) fib(3)
d-____ P
~ T~ - /\“\ / \“\
fib{4) fib(3) fib(3) fib(2) fib(3) fib2) fib(2) fib(1)
A A A
VN /N /" VAN
fib(3) fib(2) fib{2) fib(1) fib(2) fib{1) fib(2) fib(1)
/" \
fib(2) fib(1)

Programowanie dynamiczne — obliczanie liczb Fibonacciego

Liczby Fibonacciego — rozwigzanie iteracyjne

Oczywiscie tej podwodjnej rekurencji moznaby tatwo unikng¢ zamieniajac algorytm
rekurencyjny na iteracyjny:

F1BO-ITER(n)

1 ifn<l1 // for completeness
2 return 0

3 elseif n ==

4 return 1

5 fib2 =0

6 fibl =1

7 fori=2ton

8 fib0 = fib1 + fib2
9 fib2 = fibl

10 fib1 = fib0

11 return fib0

% time python3 fibo_iter.py 50

Computing 50th Fibonacci number ...

= 12586269025

real: Om0.028s, user: Om0.016s, sys: Om0.012s

Programowanie dynamiczne — obliczanie liczb Fibonacciego

Ale teraz mozemy naprawde poszalec:

% time python3 fibo_iter.py 500

Computing 500th Fibonacci number ...

= 1394232245616978801397243828704072839500702565876973072641089629483255716\
22863290691557658876222521294125

real: Om0.028s, user: Om0.020s, sys: OmO.008s

% time python3 fibo_iter.py 5000

Computing 5000th Fibonacci number ...

= 387896845438832563370191630832590531208212771464624510616059721489555013\
904403709701082291646221066947929345285888297381348310200895498294036143015\
691147893836421656394410691021450563413370655865623825465670071252592990385\
493381392883637834751890876297071203333705292310769300851809384980180384781\
399674888176555465378829164426891298038461377896902150229308247566634622492\
307188332480328037503913035290330450584270114763524227021093463769910400671\
417488329842289149127310405432875329804427367682297724498774987455569190770\
388063704683279481135897373999311010621930814901857081539785437919530561751\
076105307568878376603366735544525884488624161921055345749367589784902798823\
435102359984466393485325641195222185956306047536464547076033090242080638258\
492915645287629157575914234380914230291749108898415520985443248659407979357\
131684169286803954530954538869811466508206686289742063932343848846524098874\
2395873801976993820317174208932265468879364002630797780056875912967138963421\
4252579116872755600360311370547754724604639987588046985173408674382863125
real: Om0.029s, user: Om0.013s, sys: Om0.016s

Programowanie dynamiczne — obliczanie liczb Fibonacciego

Liczby Fibonacciego — spamietywanie

Rozwigzanie iteracyjne ma nie tylko przewage polegajaca na uniknieciu lawiny
podwojnych rekurencji, ale ogdlnie rozwigzania rekurencyjne wprowadzaja

w wykonywaniu programow dodatkowe narzuty na wywotania procedur, a w niektorych
przypadkach dtugi tancuch wywotan rekurencyjnych moze przepetni¢ zakres pamieci
zarezerwowany dla stosu.

Jednak rozwigzania rekurencyjne maja pewne zalety — bardzo czesto s3 bardziej
czytelne i prostsze, czego obliczanie liczb Fibonacciego jest dobrym przyktadem.
Czesto gotowi bylibySmy pogodzi¢ sie z dodatkowym narzutem wywotan
rekurencyjnych, i przynajmniej na poczatkowym etapie eksperymentalnego
uruchamiania programu postuzy¢ sie czytelnym i prostym rozwigzaniem rekurencyjnym.

W przypadku liczb Fibonacciego nie sam mechanizm rekurencji byt problemem, ale ich
lawinowe duplikowanie. Jednak mozna unikna¢ tego lawinowego duplikowania przez
prosty zabieg polegajacy na zapamietywaniu juz raz obliczonych liczb Fibonacciego

w tablicy globalnej, i unikaniu dublowanych obliczen przez odczytanie rozwigzan

z tablicy. Takie rozwigzanie nazywane jest spamietywaniem (ang. memoization).

Programowanie dynamiczne — obliczanie liczb Fibonacciego 5

F1BO-RECUR-MEMO(n)

if n <1 // for completeness
return 0
elseif n == 1
return 1
elseif n in fibotab
return fibotab|n]
fib2 = F1IBO-RECUR-MEMO(n — 2)
fibl = F1IBO-RECUR-MEMO(n — 1)
fibotabn] = fib1 + fib2
return fibotab(n]

O© 0O ~N O 61 &~ W DN =

—_
()

% time python3 fiboe_recur_memo.py 50
Computing 50th Fibonacci number ...

= 12586269025

real: Om0.029s, user: Om0.020s, sys: OmO.008s

% time python3 fiboe_ recur_memo.py 500

Computing 500th Fibonacci number ...

= 139423224561697880139724382870407283950070256587697307264108962948325571\
622863290691557658876222521294125

real: Om0.029s, user: Om0.017s, sys: Om0.013s

Programowanie dynamiczne — obliczanie liczb Fibonacciego

% time python3 fiboe_recur_memo.py 50000

Computing 50000th Fibonacci number ...

= 107777348930729747802790388551194808296251067694115797849023092100327447\
353646523049848844402047602984931943328327405495330753981733048306741483538\
717555454051984462008734642493807232582130167019081198825161861495958608540\
993737510653044874463782996851389325663668163313173204591893189886313559961\
265561554638976403055715140539792260124322730482900071690886378620675517700\
832269328087849866274058836537593758274508704744192976808834961311297128859\

013608175009331914291885808751962605458474604194206257224753676742372629234\
677631054260685497191783786688197868052125761772640409495112155761882698223\
668381539682186867629262907557205675103732451647568429444236992124912404874\
642815806867508067244510645124441922343362518137645828033764612095719936197\
364556462149210633588703081823042665930493669537680372203970374907819690111\
266524020297618305364252373553125

real: Om0.088s, user: Om0.030s, sys: OmO.056s

W powyzszym wyniku 50000-ta liczba Fibonacciego ma 10450 cyfr i przy
standardowych ustawieniach interpretera Pythona jej obliczenie przepetnia pojemnosé
stosu wywotan procedur, oraz standardowe ustawienia konwers;ji liczb nieograniczonej
precyzji na stringi. Ale oczywiscie te ustawienia mozna powiekszyc, i zasadniczo 50000
wywotan funkcji nie jest niczym przerazajagcym dla wspdtczesnego komputera, czego
dowodzi catkowity czas obliczen ponizej 90 milisekund.

Programowanie dynamiczne — obliczanie liczb Fibonacciego 7

Liczby Fibonacciego — jeszcze raz rozwigzanie iteracyjne

|dee spamietywania mozna réwniez wykorzystaC w rozwigzaniu iteracyjnym:

F1BO-ITER-MEMO(n)

1 ifn<l1

2 fibotab|0] = 0

3 elseif n ==1

4 fibotab|l] = 1

5 fori=2ton

6 fibotabli] = fibotabli — 1] + fibotabli — 2]
7 return fibotab|n]

To rozwigzanie niekoniecznie jest dobre pod wzgledem informatycznym, poniewaz
zamienia kilka operacji przypisania do dwoch dodatkowych zmiennych na tablice
zawierajaca wszystkie kolejne liczby Fibonacciego.

Jednak ma ono istotng zalete — wykorzystuje wprost wzér definicyjny na liczbe
Fibonacciego i nie wymaga jego konwersji na procedure iteracyjng. Jak wkrétce
zobaczymy, nie dla kazdego zagadnienia taka konwersja jest rownie prosta jak w tym
przypadku. Zastosowanie spamietywania bardzo utatwia implementacje tego podejscia.

Z kodu algorytmu wynika réwniez jasno, ze dziata on w czasie O(n).

Programowanie dynamiczne — obliczanie liczb Fibonacciego

Inny problem - rozkroj preta

Aby lepiej przyblizy¢ sie do idei programowania dynamicznego rozwazmy teraz pewne
zagadnienie praktyczne. Chodzi o optymalny rozkroj preta stalowego. Zatézmy, ze
prety stalowe dostepne s3 hurtowo w pewnej standardowej dtugosci, i rozwazamy opcje
sprzedawania ich w catosci, lub po pocieciu na mniejsze odcinki. Przyjmujac, ze znamy
ceny handlowe wszystkich mozliwych dtugosci preta, i ze mozemy dowolne ciecia
wykona¢ tanio (doktadnie przyjmujemy koszt ciecia réwny zero), zalezy nam na
maksymalizacji zysku, czyli sumy wartosci pretow pocietych minus cena oryginalnego
preta pefnej dfugosci. Jest mozliwe, ze cena preta petnej dtugosci jest na tyle duza, ze
nie opfaca sie w ogdle go ciac.

Dokfadniej, majac pret dtugosci n i tabele cen p; dla?z=1,2,...,n wyznacz
maksymalng wartosc 7,, rozkroju tego preta i sprzedazy w kawatkach
catkowitoliczbowe] dtugosci.

Dla pewnych cen mozliwe jest rozwigzanie bez rozkroju, to znaczy r, = p,.

Poniewaz w kazdym punkcie ¢ pomiedzy 1 a n — 1 mamy mozliwos¢ ciecia lub
nieciecia, tych mozliwoéci razem jest 2"~!. Zapisujac rozwiazania jako sumy dtugoéci
kawatkow, jesli optymalnym rozwigzaniem jest pociecie preta na k kawatkow dtugosci
n =11 + 12 + -+ + 1 to wartos tego rozwiazania jest 7, = p;, + pi, + - + D,

Programowanie dynamiczne — rozkrdj preta 9

Rozkrdj preta — przyktad

Przyktadowa tabela cen i ponizej opcje rozkroju preta o dtugosci 4 z wartosciami
poszczegdlnych kawatkow:

dtugos¢ ¢ |1 2 3 4 5 6 7 8 9 10
cena p¢|158910 17 17 20 24 30

)l (D (S (D (S (R (D
(a) (b) (c) (d)
WIDED (IS (MDD (D00 s
(e) ®) (2) (h)

Jak widaé na rysunku, optymalny rozkréj uzyskujemy w przypadku (c) o wartosci
rqy = 10.

Programowanie dynamiczne — rozkrdj preta 10

Rozkroj preta — analiza
Ponownie przyjmujac przyktadowa tabele cen rozkroju:

dtugos¢ ¢ |
cena p2-|

3 4 5 6 7 8 9 10
g 9 10 17 17 20 24 30

mozemy obliczy¢é optymalne rozwigzania dla roznych wyjsciowych dtugosci preta:

ry = 1 dlarozwigzania 1 = 1 (bez ciecia)

ro = b dla rozwigzania 2 = 2 (bez ciecia)

rs = 8 dla rozwigzania 3 = 3 (bez ciecia)

ry = 10 dla rozwigzania 4 = 2 4 2

rs = 13 dla rozwigzania 5 =2+ 3

r¢ = 17 dla rozwigzania 6 = 6 (bez ciecia)

rr = 18 dla rozwigzania 7=14+6lub7=2+2+3
rs = 22 dla rozwigzania 8 =246

rg = 25 dla rozwigzania 9 =346

rio = 30 dla rozwigzania 10 = 10 (bez ciecia)

Programowanie dynamiczne — rozkrdj preta

Rozkrdj preta — dekompozycja na podproblemy

Ogolnie, mozemy zapisa¢ warto$¢ rozwigzania dla dtugosci n za pomoca rozwigzan dla
krétszych odcinkéw:

I'n = max{pn, 1+ T'n—1,72 + T'n—2y++-3Tn-1 + frl}

Sens powyzszego wzoru jest nastepujacy: rozwigzanie optymalne wymaga 0 ciec
(pierwszy wyraz we wzorze na maksimum), badz wymaga co najmniej jednego ciecia na
kawatki dtugosci ¢ oraz n — ¢, i dalszego optymalnego rozkroju otrzymanych kawatkow.

Inaczej mowigc, mozemy rozwigzac problem rozkroju dla wszystkich mozliwych
wariantéw pierwszego ciecia (od 1 do n — 1 w powyzszym wzorze na max), i majac
wartosci ich optymalnych rozwigzan, wybraé optymalng sume, lub brak ciecia (pierwszy
Wyraz p, W powyzszym wzorze).

W takiej sytuacji, gdy optymalne rozwigzanie problemu zawiera w sobie optymalne
rozwigzania podprobleméw, ktére mozna rozwigzac niezaleznie, méwimy, ze problem
ma optymalng podstrukture.

Programowanie dynamiczne — rozkrdj preta 12

Rozkrdj preta — pseudokod rozwigzania

Dekompozycje problemu ciecia na podproblemy, wynikajaca z powyzszego wzoru,

| wymagajacg rozwigzania kaskady podproblemow, mozemy nieco uporzadkowac

| uprosci¢, uwzgledniajac pierwsze ciecie na odcinek dfugosci 7, oraz reszte preta n — 1,
dla ktérego trzeba znalez¢ optymalne rozwigzanie r,,_;:

rp,=max{p;, +r,_;: 1 <i<n}
Przypadek bez ciecia otrzymujemy dla z =n i rg.

W tym ujeciu optymalne rozwigzanie uzyskujemy po podziale i rozwigzaniu tylko
jednego podproblemu. Mozemy to wyrazi¢ pseudokodem:

CuT-RoD(p, n)
1 ifn==

2 return 0
3 q=—0

4 fori=1ton
5 q = max{q, p|i] + CuT-ROD(p,n — i)}
6 return g

Programowanie dynamiczne — rozkrdj preta 13

Pseudokod procedury CUT-ROD wyglada niewinnie, jakby z pojedynczym wywotaniem
rekurencyjnym, ale niestety, to wywotanie znajduje sie w petli, a wiec naprawde jest to

lawina wywotan rekurencyjnych.

Drzewo wywotan rekurencyjnych dla n = 4:

Proba uzycia tego rozwigzania dla wartosci n > 40 okazuje sie bardzo nieefektywna.
Czy to nam sie z czyms$ kojarzy? Fibonacci?
Spamietywanie na pomoc?

Programowanie dynamiczne — rozkrdj preta 14

Programowanie dynamiczne — podejscie zstepujace

MEMOIZED-CUT-ROD(p, n)

1 let r|0:n| be anewarray / will remember solution values in r
2 fori=0ton

3 rli| = —oo

4 return MEMOIZED-CUT-ROD-AUX(p, n,)

MEMOIZED-CUT-ROD-AUX(p, n,)

1 ifrn >0 // already have a solution for length n?

2 return 7|n|

3 ifn==

4 qg=20

5 else g = —

6 fori=1ton // i is the position of the first cut

7 q = max{q, p|i] + MEMOIZED-CUT-ROD-AUX(p,n —i,7)}
8 rln]=q // remember the solution value for length n

9 return g

To rozwigzanie taczy rekurencje ze spamietywaniem, i zastepuje pierwotne rozwigzanie
o eksponencjalnym czasie dziatania ©(2") rozwiazaniem o czasie kwadratowym ©(n?).

Programowanie dynamiczne — rozkrdj preta 15

Programowanie dynamiczne — podejscie wstepujace

Mozliwe jest rowniez podejscie alternatywne. Zamiast dzieli¢ i rzadzi¢, mozemy
zastosowac podejscie analogiczne do iteracyjnego obliczania liczb Fibonacciego,

i skonstruowa¢ kompletna tabele 7[0 : n] rozwiazan optymalnych wszystkich dtugosci
preta az do n, i na koncu zwréci¢ r|n|. Rozwiazanie jest proste poniewaz ponownie
wykorzystuje spamietywanie:

BorToM-UpP-CuT-ROD(p, n)

1 let 7[0: n] be a new array // will remember solution values in r

2 r|0]=0

3 forj=1ton // for increasing rod length

4 q = —00

5 fori=1to // 1 is the position of the first cut

; g = ma{g, pli] + [— i}

7 rlj] = q // remember the solution value for length j
8 return r|n|

W tym rozwiazaniu widaé wyraznie jego O(n?) czas dziatania.

Programowanie dynamiczne — rozkrdj preta

16

Programowanie dynamiczne — podsumowanie

W programowaniu dynamicznym wazne jest jasne zdefiniowanie podprobleméw,
ktorych rozwigzania sktadaja sie na rozwigzanie problemu podstawowego, oraz
zaleznoSci pomiedzy podproblemami i ich rozwigzaniami.

Te podproblemy i ich zaleznoSci mozna przedstawi¢ na grafie
podproblemdw. Rysunek przedstawia graf podproblemoéw dla

rozkroju preta przy n = 4. Wezty grafu odpowiadajg podproblemom,

a tuki skierowane f3cza jeden podproblem z innym podproblemem,

ktorego rozwigzanie wptywa na rozwigzanie pierwszego podproblemu.

W podejsciu zstepujacym (top-down) rozwiazujac ten pierwszy

podproblem rekurencyjnie wywotujemy rozwigzanie drugiego A
podproblemu. Graf jest w istocie sptaszczonym drzewem wywoftan
rekurencyjnych, ktére przez spamietywanie zostaty zredukowane do
pojedynczego wywotania.

W podejséciu wstepujacym (bottom-up) tuk dla kazdego podproblemu wskazuje inne
podproblemy, ktére muszg byc¢ rozwigzane zanim bedzie mozliwe skonstruowanie
rozwigzanie pierwotnego problemu.

Programowanie dynamiczne — rozkrdj preta

Programowanie dynamiczne — rozkrdj preta

18

Rozkrdj preta — zapomniany szczegot

W problemie rozkroju preta pozostat jeden szczegdt do uzupetnienia. Przedstawione
algorytmy obliczaja jedynie koszt optymalnego rozwiazania, ale nie daja wskazéwek jak
kroi¢ pret. Mozna w tym celu uzupetni¢ procedure BorTOM-UP-CUT-ROD, aby
generowata nie tylko koszty, ale réwniez odpowiadajace im miejsce (pierwszego) ciecia
(bo tak dziata uproszczony rekurencyjny schemat rozwigzania problemu rozkroju):

1 4 5 6 7 8 9 10

0
0

2 3
1 5 8 10 13 17 18 22 25 30
1 2 3 2 2 6 1 2 3 10

Aby uzyskac¢ miejsca kolejnych cie¢ nalezy obliczy¢ dtugos¢ reszty preta pozostatej po
pierwszym cieciu, i dla niej odnalez¢ w tabelce miejsce kolejnego ,,pierwszego” ciecia.

Na przyktad, dla n = 7 pierwsze ciecie wypada w miejscu ¢ = 1, a dla reszty preta
dtugosci n = 6 miejscem ciecia jest ¢ = 6, co oznacza brak ciecia.

Uzupetniona procedura BoTTOM-UP-CUT-ROD jak réwniez pomocnicza procedura
wyswietlajgca wszystkie miejsca ciecia przedstawione sg ponize;.

Programowanie dynamiczne — rozkrdj preta 19

EXTENDED-BoTTOM-UP-CUT-ROD(p, n)

1 let 7[0 : n] and s[1 : n] be new arrays

2 r[0] =0

3 forj=1ton // for increasing rod length j

4 g = —0o0

5 fori =1to // 1 is the position of the first cut

6 if ¢ <pli] +r[j—1]

7 q = pli] +rlj —1]

8 sljl =1 // best cut location so far for length j

9 rl7] = q // remember the solution value for length j

10 return r and s

PRINT-CUT-ROD-SOUTION(p, n)
1 (r,s) = EXTENDED-BoTTOM-UP-CUT-ROD(p, n)
2 whilen >0

3 print s|n| // cut location for length n
4 n =n — s[n| // length of the remainder of the rod

Programowanie dynamiczne — rozkrdj preta

20

Optymalne drzewa przeszukiwan BST

Jako przyktad nieco trudniejszego algorytmu, wykorzystujacego programowanie
dynamiczne, rozwazymy algorytm budowania optymalnych drzew przeszukiwan BST.
Dla przypomnienia, optymalnym drzewem przeszukiwan dla sekwencji kluczy
ki, ko, ..., k,, ze znanym rozktadem prawdopodobienstw ich wyszukiwania

D1, P2, - - -, Pn, Nazywamy binarne drzewo przeszukiwan, ktére zapewnia minimalna
oczekiwang liczbe krokow przeszukiwania sposrod wszystkich mozliwych binarnych
drzew przeszukiwan (uporzadkowanych) zawierajacych te klucze.

Ta definicja wymaga pewnego uzupetnienia. Chcemy dopusci¢ mozliwosé, by na
drzewie wykonywane byty rowniez wyszukiwania wartosci nienalezacych do sekwencji
kluczy (czyli wyszukiwan zakonczonych porazka), i znamy réwniez rozktad
prawdopodobienstw takich wyszukiwan. Chcemy by drzewo byto optymalne réwniez dla
wyszukiwania tych wartosci, ktére nazwiemy tutaj niekluczami (ang. dummy key;

w polskim ttumaczeniu podrecznika CLRS nieklucze nazywane s3 kluczami-imitacjami).

Nieklucze nie maja konkretnych wartosci, jak klucze, np. liczbowych. Dla sekwencji n
kluczy k1, ko, .. ., k,, przyjmujemy odpowiednig sekwencje niekluczy dy, dy, ds, ..., d,.
Nieklucz d reprezentuje wszystkie wartosci mniejsze od klucza kq, nieklucz d,
reprezentuje wszystkie wartosci wieksze od k,,, natomiast dla (¢ = 1,2,...,n — 1)
kazdy nieklucz d; reprezentuje wartosci pomiedzy k; i k;11.

Programowanie dynamiczne — optymalne drzewa przeszukiwan 21

[zatozenia, dla sekwencji n kluczy k1, ko, . . ., k, znamy rozktad prawdopodobienstwa

ich wyszukiwan dany sekwencja prawdopodobienstw p1, po, . .., p,. Ale dla tej
sekwencji kluczy mamy wynikajaca z niej sekwencje n + 1 niekluczy dy, di, do, ..., d,
i odpowiadajacy jej rozktad prawdopodobienstw wyszukiwania odpowiednich niekluczy,
ktére oznaczymy qo, q1, @2, . . ., ¢,. To znaczy, prawdopodobienstwo wyszukania

nieklucza d; wynosi g;. A poniewaz kazde wyszukiwanie odnosi sie albo do jednego
z kluczy, albo do jednego z niekluczy, to mamy:

n n
ZP@ + Z q =1
1=1 1=0

Wykorzystujac znane rozktady prawdopodobienstw mozemy obliczy¢ oczekiwany koszt
wyszukiwania w danym drzewie T. Zakfadamy, ze rzeczywisty koszt dowolnego

wyszukiwania jest réwny liczbie sprawdzonych wierzchotkéw drzewa, ktory jest réwny
gtebokosci znalezionego wierzchotka w drzewie, plus 1. Na przyktfad, gdy poszukiwany
(i znaleziony) byt korzen drzewa, na gtebokosci 0, to koszt wyszukiwania jest 1.

Erlkoszt wyszuk.| = Z(depthT(O+1) - pi+ Z:(dEPthT(d@') +1)-q

/L:
n

_ z depthp(k;) - pz+2depthT<d> gi

Programowanie dynamiczne — optymalne drzewa przeszukiwan 22

Wtasnosci optymalnego drzewa przeszukiwan BST

Zauwazmy najpierw, ze w wynikowym drzewie klucze powinny by¢ wewnetrznymi
weztami, a nieklucze lis¢mi. Wynika to z faktu, ze nieklucze nie maja konkretnych
wartosci, ich jakby nie ma w drzewie, one tylko wytapuja nieudane poszukiwania.

Nastepnie zauwazmy, ze problem budowy optymalnego BST ma optymalna
podstrukture, to znaczy, jesli istnieje optymalne BST T dla pewnego zestawu kluczy,

i zawiera ono w sobie poddrzewo 1" zakorzenione w jakim$ wezle k,. i zawierajace
klucze k;, ..., k; i nieklucze d;_1, ..., d;, to poddrzewo T" musi by¢ optymalne dla
tego zestawu kluczy i niekluczy. Albowiem gdyby nie byto ono optymalne, a optymalne
byto inne poddrzewo T z tymi samymi kluczami i niekluczami, o nizszym
oczekiwanym czasie wyszukiwania, to moznaby tym poddrzewem T zastapié¢ 1"

w drzewie T i w ten sposob zmniejszyC oczekiwany czas wyszukiwania w drzewie T'.

Zwrocmy jeszcze uwage na pewng ceche poddrzew ,,pustych”. Gdyby korzeniem
(pod)drzewa zawierajacego klucze k;, . .., k; byt klucz k;, to wszystkie klucze tego
poddrzewa znajdowatyby sie w jego prawym poddrzewie, a lewe poddrzewo zawieratoby
0 kluczy, a wiec byfo ,,puste”. Jednak zawieratoby ono wtedy jeden nieklucz d;_;.

A wiec mozemy o poddrzewach zawierajacych 0 kluczy mysle¢ jako o ,,pustych”,
jednak beda one w istocie zawieraty jeden lis¢ z niekluczem.

Programowanie dynamiczne — optymalne drzewa przeszukiwan 23

i| 0 1 2 3 4 5
Przyktad dla n = 5 kluczy: p; 015 0.10 005 0.10 0.20

¢ | 005 010 0.05 0.05 0.05 0.10
node depth probability contribution node depth probability contribution
k1 1 0.15 0.30 k1 1 0.15 0.30
ko 0 0.10 0.10 ko 0 0.10 0.10
k3 2 0.05 0.15 ks 3 0.05 0.20
ky 1 0.10 0.20 ky 2 0.10 0.30
ks 2 0.20 0.60 ks 1 0.20 0.40
do 2 0.05 0.15 do 2 0.05 0.15
dq 2 0.10 0.30 dq 2 0.10 0.30
do 3 0.05 0.20 dy - 0.05 0.25
ds 3 0.05 0.20 ds 4 0.05 0.25
dy 3 0.05 0.20 dy 3 0.05 0.20
ds 3 0.10 0.40 ds 2 0.10 0.30
Total 2.80 Total 2.75

Programowanie dynamiczne — optymalne drzewa przeszukiwan

24

Budowa optymalnego drzewa przeszukiwan BST

Chcemy skonstruowac algorytm budowy optymalnego drzewa BST za pomoca budowy
jego optymalnych poddrzew. Podproblemem jest budowa drzewa optymalnego dla
sekwencji kluczy k;, ..., kj, gdziet > 1,7 <mn,j > i —1 (przypadek j =7 — 1 jest
przypadkiem pustego poddrzewa).

Oznaczamy przez eli, j| oczekiwany koszt wyszukiwania w optymalnym drzewie
zawierajacym klucze k;, ..., k;. Algorytm obliczy petna tablice e|i, j] dla
j>i—1,9=1,...,n+1,7=0,...,n (rozszerzone zakresy wartosci uwzgledniaja
sekwencje puste kluczy, generujace ,puste” poddrzewa z pojedynczymi niekluczami).

Skrajne przypadki ,pustych” poddrzew uzyskujemy dla kazdej pary j =7 — 1 gdzie
kosztem przeszukiwania jest prawdopodobienstwo dostepu do nieklucza, czyli
G[i,i o 1] = (qi-1 -

Dla y > i bedziemy rozwazali wszystkie mozliwe korzenie k, poddrzewa dla sekwencji
Ki,...,k;, gdzie lewe poddrzewo bedzie zawierato klucze k;, ..., k._1, a prawe
poddrzewo klucze k1, ..., k;.

Dodatkowo bedziemy wykorzystywali tablice sum prawdopodobienstw:

n n
wli, j| = sz' + Zq@'
1=1 1=0

Programowanie dynamiczne — optymalne drzewa przeszukiwan 25

Dla obliczen tablicy e[i, j| mozna wyprowadzi¢ wzér:

efi,] = | 41 gdy j =1—1
»J min{eli,r — 1] +e[r +1,j] +w(,j) i <r <j} gdyi<j

Przedstawiony ponizej algorytm oblicza wszystkie wartosci tablic eli, 7] i w]i, j|
(w podanych wyzej zakresach indekséw), i po jego zakonczeniu za rozwigzanie
bedziemy uwazali wartos¢ e[l, n|.

Jednak aby utatwi¢ odtworzenie optymalnego drzewa odpowiadajacego temu
rozwigzaniu, algorytm dodatkowo zbuduje tablice root|i, j| dlai,j = 1,...,n, ktéra
w kazdej pozycji zawiera¢ bedzie indeks r korzenia £, optymalnego drzewa dla
podsekwencji kluczy k;, ..., k; (zatem gtéwny korzen catego optymalnego drzewa BST

znajdziemy w pozycji root|1, nl).

Programowanie dynamiczne — optymalne drzewa przeszukiwan 26

Algorytm budowy optymalnych drzew BST

OPTIMAL-BST(p, q,n)
1 lete[l:n+1,0:n,wl:n+1,0:n],root]l:n,1:n]be new tables

2 fori=1ton+1 // base cases

3 eli, 7 — 1] = q;_1

4 wli, 1 — 1] = g1

5 forl=1ton

6 forie=1ton—1[+1

7 g=oFrl—1

8 eli, j] = oo

9 w[i,j]:w[i,j—1]+pj+qj

10 forr=17to // try all possible roots r
11 t=celi,r—1]+elr+1,5]+wli,j] / see formula
12 if ¢ < eli,J]

13 eli,j] =t

14 root|i, j] = r

15 return e, root

Jak widac, algorytm wykonuje trzy zagniezdzone petle w zakresie maksymalnie do n
i zatem dziata w czasie O(n?).

Programowanie dynamiczne — optymalne drzewa przeszukiwan

27

Przyktadowe drzewo BST — rozwigzanie

Krotkie podsumowanie — pytania sprawdzajgce

1. Napisz pseudokod procedury DISPLAY-OPTIMAL-BST (root, n), ktéra majac
danga tablice root wypisze strukture optymalnego drzewa BST.

2. Wyznacz koszt wyszukiwania i strukture optymalnego drzewa BST dla zestawu
n = 7 kluczy z nastepujacymi prawdopodobienstwami:

? 0 1 2 3 4 5 6 7

Di 0.04 0.06 0.08 0.02 0.10 0.12 0.14

g; | 006 006 006 006 0.05 0.05 0.05 0.05

Programowanie dynamiczne — podsumowanie

29

Literatura i materiaty pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Woprowadzenie do algorytmow, PWN, 2024, rozdziat 14.

Programowanie dynamiczne — literatura

30

