Abstrakcja zbiorow w informatyce

Struktury danych potrzebne sg w programach komputerowych dla przechowywania
danych. S3 one odpowiednikiem matematycznej koncepcji zbioréw, ale s3 istotne
roznice pomiedzy zbiorami matematycznymi a zbiorami danych w komputerze. Te
ostatnie zawsze s3 budowane z poszczegolnych elementéw, nigdy nie sg nieskonczone,
| zawsze posiadajg jakas kolejnos¢ przechowywanych w nich elementow, podczas gdy
w zbiorach matematycznych taka kolejnosc nie istnieje.

Zbiory danych w informatyce réznig sie miedzy sobg — miedzy innymi — zestawem
operacji jakie chcemy na nich wykonywac. Do podstawowych operacji naleza:
dodawanie oraz usuwanie elementu do/ze zbioru, oraz wyszukiwanie elementu, na
przykfad wedtug jakiegos klucza, ktory jest cechg lub sktadnikiem elementu.

Ale w konkretnym zastosowaniu zbior danych moze wymagac uzycia bardzie;
wyspecjalizowanych operacji, czego przyktadem moze by¢ znajdowanie i/lub usuwanie
elementu maksymalnego, ze struktura danych dostosowana do fatwego wykonywania
tych operacji w postaci kopcéw. Zatem dobra, efektywna implementacja struktury
danych do danego zastosowania moze zaleze¢ od operacji jakie chcemy na tych danych
wykonywac.

Elementarne struktury danych 1

Tablice

Tablice (arrays) sa strukturg danych w wiekszosci jezykéw programowania zapisang

w ciggtym obszarze pamieci, gdzie poszczegdlne elementy tablicy identyfikowane s3 za
pomoca indeksu. Tablice moga byc indeksowane poczawszy od 0, albo od 1, albo za
pomoca jeszcze inaczej wybranego zakresu indeksow.

Tablice moga byc¢ jedno- lub wielowymiarowe, przy czym na przyktad jezyk
programowania ANSI C traktuje tablice wielowymiarowe jako tablice tablic.

W podreczniku CLRS tablice nominalnie sg zawsze jednowymiarowe, a dla przypadkow
wielowymiarowych stosuje sie okreslenie macierzy (matrix/matrices). Tu nie bedziemy
stosowac tego rozrdéznienia, dopuszczajac tablice zaréwno jedno- jaki wielowymiarowe.

Podstawowym zatozeniem i wtasnoscia tablic jako struktur danych, w wiekszosci
implementacji, jest, ze ich elementy s3 jednakowego rozmiaru. Wynika z tego
mozliwos¢ obliczania adreséw wszystkich elementow tablicy w jednolity sposéb, a wiec
dostep do kazdego elementu nawet bardzo duzej tablicy zajmuje czas staty, niezalezny
od jej rozmiaru.

Istnieje szereg wariantéw implementacji tablic wielowymiarowych, ale w wiekszosci
zachowuja one te zasade statego czasu dostepu do kazdego elementu (przy zatozeniu,
ze liczba wymiaréw tablicy jest ograniczona, a nie np. roénie wraz z liczba elementéw).

Elementarne struktury danych 2

Stosy

Stos jest uporzadkowang listg elementéw, w ktérej dostep jest mozliwy tylko do
ostatnio wprowadzonego elementu. Nazwa stosu ma nawigzywac do stosu talerzy, do
ktoérego ma sens jedynie dodawac nowe elementy na wierzch, bez ruszania juz
zawartych na stosie, albo zdejmowac wytacznie z wierzchu. Operacje dodawania
elementu do stosu tradycyjnie nazywa sie PUSH a usuwania ostatniego elementu POP.

Méwi sie o ,,dyscyplinie stosowej” (LIFO: Last-In-First-Out) w odniesieniu do sytuacji,
kiedy kolejnosC przetwarzania elementéw jest odwrotna do kolejnosci ich pojawienia sie.

Stos mozna zaimplementowac za pomoca tablicy, ktéra posiada atrybuty S.top
zawierajacy indeks ostatniego elementu stosu, lub 0 gdy stos jest pusty, oraz S.size
okreslajgcy rozmiar tablicy, czyli pojemnosc stosu. Nastepujacy rysunek ilustruje
przyktadowy poczatkowy stan stosu (a), stan stosu po dodaniu kolejno elementéw 17 i
3 (b), i po usunieciu elementu 17 (c):

1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
S|15/6 2|9 S|1516 (2|9 |17]|3 S|15/6 (2|9 |17]|3
S.top =4 S.top =6 S.top =5
(a) (b) ()

Elementarne struktury danych 3

Interfejs tak implementowanego stosu odzwierciedla nastepujacy pseudokod:

STACK-EMPTY(S)

1 if Stop==0
2 return TRUE
3 else return FALSE

PUSH(S, x)

1 if Sitop == S.size

2 error “overflow”

3 else S.top = S.top+ 1
4 S|S.top| = x
Popr(S)

1 if STACK-EMPTY(S)

2 error “underflow”

3 else S.itop = S.top — 1
4 return S|S.top + 1]

Inicjalizacja S.top = 0

Elementarne struktury danych

Wskaznikowa implementacja stosu

STACK-EMPTY(S)
1 if Sitop == NIL
2 return TRUE
3 else return FALSE

PUSH(S, x)

1 x.next = S.top

2 Stop==x

Popr(S)

1 if STACK-EMPTY(S)
2 error “underflow”

3 else S.top = NIL

Zakfadamy tu, ze tworzeniem elementdw, tzn. alokacjg ich pamieci, zajmuje sie
program wywotujacy.

Elementarne struktury danych

Elementarne struktury danych

Kolejki

W kolejce dostep istnieje do elementu pierwszego, zwanego réwniez gfowa (head)
kolejki, oraz ostatniego, zwanego ogonem (tail). Elementy dodawane do kolejki
ustawiane sg zawsze za ogonem, i stajg sie nowym ogonem kolejki, natomiast elementy
usuwane brane s3 ,,z gtowy”, tym samym odstaniajac nowa gtowe kolejki.

Analogicznie do dyscypliny stosowej LIFO, w przypadku kolejek méwimy o dyscyplinie
FIFO (First-In-First-Out).

Aby zaimplementowac kolejke za pomoca tablicy, trzeba zwréci¢ uwage, ze

w odroznieniu od stosu, proba zapefnienia poczatkowego zakresu tablicy elementami
kolejki prowadzi do bardzo nieefektywnej implementacji, kiedy co prawda dodanie
elementu na koniec kolejki jest tatwe, ale usuniecie pierwszego elementu bedzie
wymagato przesuniecia (przepisania) wszystkich elementéw o jedng pozycje.

Zamiast tego, poprawna i efektywna implementacja kolejki HEAD
w tablicy wykorzystuje strukture bufora kotowego (circular |
buffer/ring buffer). Kolejne elementy s3 dodawane na koniec

kolejki, a poczatkowe elementy usuwane. Poczatek kolejki nie o
przypada zawsze w pierwszym elemencie tablicy, tylko , kroczy”. | e _

./ Input/

Po zapetnieniu tablicy elementy s3 wypetniane od poczatku. A wieeng

Output / Read End

Elementarne struktury danych 7

Przyktadowe operacje na kolejce: stan kolejki z elementami 15,6,9,8,4 na pozycjach
tablicy od 7 do 11 (a), stan kolejki po dodaniu kolejno elementéw: 17, 3, i 5 (b), i stan
po usunieciu (pierwszego) elementu (c):

1 2 3 4 5 6 7 8 9 10 11 12
@ 0 15698 |4

A A

Q.head =7 Q.tail = 12

1 2 3 4 5 6 7 8 9 10 11 12
b 0[3]5 15/ 6198|417

! }

Q.tail =3 Q.head =7

1 2 3 4 5 6 7 8 9 10 11 12
© 0|35 1569|8417

! }

Q.tail =3 Q.head = 8

Elementarne struktury danych 8

ENQUEUE(Q,)

1 QQ.tail] = x
2 if Q.tail == ().s1ze
3 Q.tail =1

4 else Q.tail = Q.tarl + 1

DEQUEUE(Q)

1 x = Q|Q.head|

2 if Q.head == ().size

3 Q.head =1

4 else ().head = ().head + 1
5 returnzx

Uwaga: inicjalizacja (Q.head = Q) .tail = 1

Powyzszy pseudokod ignoruje wyjatki, czyli probe usuniecia elementu z pustej kolejki,
oraz probe dodania elementu do pefne;.

Cwiczenie: uzupetnij powyzszy pseudokod o obstuge tych wyjatkéw, podobnie jak
w przypadku stosow.

Elementarne struktury danych

Wskaznikowa implementacja kolejki

Elementarne struktury danych

10

Listy wskaznikowe zawieraja cigg elementéw potaczony wskaznikami. Nie
rozpatrujemy tablicowej implementacji listy, poniewaz nie rozni sie ona niczym od

tablicy jako takiej.

Przyktad listy dwukierunkowej (a) z elementami 9, 16, i 1, (b) po wykonaniu
operacji LIST-PREPEND(L, x), gdzie x.key = 25, (c) po wykonaniu operagji
L1ST-INSERT(z, y), gdzie x.key = 36, a y jest wskaznikiem do elementu listy

Listy wskaznikowe

zawierajacego klucz 9, (d) po wywotaniu LIST-DELETE(L,), gdzie jest wskaznikiem
do elementu listy zawierajacego klucz 4:

(a) L.head —> /

(b) L.head —> /

25

(¢c) L.head —>/

25

TV

(d) L.head —> /

25

1y

prev key next

\ | /
< | |16] ¢ 4 1
< |9 <L |16 4
<« | |9 << (36 16
| |9 |le 36 16

i

Elementarne struktury danych

11

Elementarne struktury danych

12

LiST-SEARCH(L, k)

1 x = L.head

2 while x # NIL and z.key # k
3 T = T.next

4 return x

L1ST-PREPEND(L, x)

1 x.next = L.head

2 x.prev = NIL

3 if L.head # NIL

4 L.head.prev = x
5 L.head = x

L1ST-INSERT(z, y)

1 x.next = y.next

2 x.prev =y

3 if y.next # NIL

4 y.next.prev = x
5 y.next =x

LiST-DELETE(L, x)

1 if x.prev # NIL

2 r.prev.next = x.next
3 else L.head = x.next

4 if x.next # NIL

5 r.next.prev = x.prev

Elementarne struktury danych

13

Warianty list, listy z wartownikiem

Powyzszy przyktfad listy dwukierunkowej jest jednym z wielu mozliwych wariantow list.
Listy moga by potaczone jedno- lub dwukierunkowo, moga by¢ uporzadkowane lub nie.

Jako specjalny przypadek rozwazymy listy z wartownikiem. Zauwazmy najpierw, ze
kod procedury LIST-DELETE mégtby byC znacznie prostszy, gdyby nie koniecznosc
kazdorazowego sprawdzania warunkéw brzegowych:

L1ST-DELETE(L, x)

1 if x.prev # NIL

r.prev.next = x.next
else L.head = x.next

2

3

4 if x.next # NIL

5 xr.next.prev = x.prev

LisST-DELETE’ (L,)

1 x.prev.next = x.next
2 x.next.prev = x.prev

Taka implementacja bytaby mozliwa, gdybySmy mieli pewno$¢, ze lista nigdy nie bedzie
pusta. Jest mozliwa prosta modyfikacja listy dwukierunkowej w dwukierunkowa liste
cykliczng z wartownikiem. Taka lista zawsze zawiera jeden nadmiarowy, catkowicie
sztuczny element, zwany wartownikiem, ktory zastepuje wartos¢ NIL.

Elementarne struktury danych 14

Lista z wartownikiem — przyktad

Przyktadowe operacje na dwukierunkowej liscie cyklicznej z wartownikiem: (a) pusta
lista, (b) lista podobna jak w poprzednich przyktadach, z elementami: 9, 16, 4, i 1, (c)
lista po wywotaniu LIST-INSERT’(z, L.nil) gdzie x.key = 25; poniewaz nowy
element wstawiany jest bezposrednio za wartownikiem, to staje sie pierwszym
elementem listy, (d) lista po usunieciu elementu z kluczem 1, (e) lista po wywotaniu
L1ST-INSERT’(x, y) gdzie x.key = 36 i y jest wskaznikiem do elementu z kluczem 9:

@ L.nil 'j
a il —

- -

i

®) L.nil —> <L |9 <L |16 T |4 <L | L
C)
,
1]] 1 1 [
(¢c) L.nil —> : :i_ 25 :i_ 9 :i_ 16 :i_ 4 :i_ 1 <)
(> ——> ——> ——> ——> \'
(d L.nil —{ | <l |25 < |9 < | |16 <l |4
C)
,
1] —]] 1 [
© Lenil —=1y 1|25 T |9 T[T [36) T |16] T[ZL |4 <

Elementarne struktury danych 15

Listy z wartownikiem — dodawanie elementu

Zastosowanie listy z wartownikiem upraszcza rowniez nieco procedure LIST-INSERT:

L1ST-INSERT(z, y)

1 x.next = y.next

2 x.prev =y

3 if y.next # NIL

4 y.next.prev = x
5 y.next =x

L1ST-INSERT’(z, y)

1 x.next = y.next
2 x.prev =1y
3 y.next.prev =x
4 y.nexrt ==x

Elementarne struktury danych

16

Listy z wartownikiem — przeszukiwanie

Przeszukiwanie listy z wartownikiem jest podobne do zwyktej listy nieuporzadkowanej,
jednak mozna w nim osiggnac skrocenie czasu wykonania. Oryginalna procedura
LIST-SEARCH wykonuje w wierszu 2 dwa poréwnania: pierwsze sprawdza koniec listy,
| drugie, czy zostat znaleziony poszukiwany element. W przypadku listy z wartownikiem
pierwsze sprawdzenie mozna poming¢, ale wtedy, w przypadku braku na liscie elementu
z poszukiwanym kluczem, procedura ,,zawinie sie” na koncu listy i bedzie krecifa sie

w kotko. Aby tego unikngé, mozna wpisac¢ poszukiwany klucz do wartownika
zapewniajac, ze na pewno zostanie znaleziony, co zatrzyma przeszukiwanie:

L1ST-SEARCH(L, k)

1 x = L.head
while x £ NIL and z.key # k

2
3 Tr = x.next
4 return x

L1ST-SEARCH’(L, k)

1 Lnlkey =k /| store the key in the sentinel to guarantee it is in list
2 x = L.nil.next // start at the head of the list

3 while z.key # k

4 T = x.next

5 if x == L.nil // found k in the sentinel

6 return NIL /| k was not really in the list

7 else return z // found k in element z

Elementarne struktury danych 17

Listy z wartownikiem — podsumowanie

Listy z wartownikiem s3 przyktadem struktury danych, ktora kosztem minimalnej
rozbudowy struktury pozwala uprosci¢ kod stosowanych funkcji, a takze przyspieszyé
podstawowa operacje przeszukiwania cafej listy (ale jest to przyspieszenie tylko o staty
wspotczynnik, bez poprawy ztozonosci asymptotycznej).

Jednak o ile w przypadku intensywnie wykorzystywanych list zastosowanie takie;
struktury jak najbardziej ma sens, to nie zawsze jest uzasadnione. Na przyktad, gdy
program czesto tworzy niewielkie listy, i potem je kasuje, to narzut na dodatkowa
pamiec i utworzenie listy z wartownikiem moze niwelowaé ewentualne zyski.

Elementarne struktury danych 18

Drzewa binarne

Listy sg dobrg reprezentacja kolekcji elementéw, ktore naturalnie uktadaja sie

w sekwencje. Jednak nie zawsze jedynga relacja jakg chcemy odzwierciedli¢ w strukturze
danych jest sekwencja. Ponizszy rysunek przedstawia drzewo binarne zbudowane

z jednakowych obiektow zawierajacych wskazniki do lewego i prawego poddrzewa, oraz
wskaznik do rodzica. Umieszczenie wszystkich tych wskaznikéw w kazdym elemencie
pozwala na tatwe przegladanie drzewa w dowolnym porzadku. Podobnie jak ze
wskaznikami do poddrzew, pusty wskaznik do rodzica wskazuje, ze dany wezet nie ma
rodzica, czyli jest korzeniem drzewa. Rysunek nie pokazuje pdl na klucz i pozostate
dane przechowywane w kazdym elemencie drzewa:

T.root

Ve
7

Elementarne struktury danych 19

Drzewa wskaznikowe z dowolng liczba podgatezi

Mozna zastosowacC podobne podejscie jak do drzew binarnych aby budowac drzewa

o dowolnej arnosci. Jednak wtedy okreslona liczba poddrzew danego wezta
determinuje ile wskaznikow do poddrzew musi by¢ pamietanych w kazdym wezle. Nie
moze bycC ich wiecej, a jesli bedzie mniej, to niektére bedg musiaty byc puste.
Alternatywnie, ponizszy rysunek ilustruje ciekawy schemat reprezentacji drzew
niebinarnych, zwany lewy-potomek, prawy-brat. Ten schemat dopuszcza dowolng
liczbe potomkéw kazdego wezta wykorzystujac pamie¢ O(n) dla drzewa o n weztach:

T.root

Y

QZ s

Elementarne struktury danych

20

Krotkie podsumowanie — pytania sprawdzajgce

1. Wyjasnij jak zaimplementowa¢ dwa stosy w jednej tablicy A[l : n] aby do
przepetnienia ktoregos z nich dochodzito dopiero wtedy, gdy taczna liczba
elementow w obu stosach osigga n. Procedury PUSH i POP powinny dziafac
w czasie O(1).

2. Uzupetnij procedury ENQUEUE i DEQUEUE o wykrywanie btedéw niedomiaru
| przepefnienia.

3. Zaimplementuj stos (napisz jego pseudokod) za pomoca listy jednokierunkowe;
(w ktoérej wezty nie zawieraja wskaznika prev. Operacje PUSH i POP powinny
dziata¢ w czasie O(1). Czy konieczne jest dodanie w tym celu jakich$ atrybutéw do
listy?

4. Napisz rekurencyjna procedure (pseudokod) dziatajacg w czasie O(n), ktéra dla
danego drzewa binarnego o n weztach wypisuje wszystkie jego klucze.

5. Napisz rekurencyjna procedure (pseudokod) dziatajaca w czasie O(n), ktéra
wypisuje wszystkie klucze danego drzewa o n weztach, pamietanego w reprezentac;i
lewy-potomek, prawy-brat.

Elementarne struktury danych — podsumowanie 21

Literatura i materiaty pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Wprowadzenie do algorytmow, PWN, 2024, rozdziat 10.

Elementarne struktury danych — literatura

22

