
Abstrakcja zbiorów w informatyce

Struktury danych potrzebne są w programach komputerowych dla przechowywania
danych. Są one odpowiednikiem matematycznej koncepcji zbiorów, ale są istotne
różnice pomiędzy zbiorami matematycznymi a zbiorami danych w komputerze. Te
ostatnie zawsze są budowane z poszczególnych elementów, nigdy nie są nieskończone,
i zawsze posiadają jakąś kolejność przechowywanych w nich elementów, podczas gdy
w zbiorach matematycznych taka kolejność nie istnieje.

Zbiory danych w informatyce różnią się między sobą — między innymi — zestawem
operacji jakie chcemy na nich wykonywać. Do podstawowych operacji należą:
dodawanie oraz usuwanie elementu do/ze zbioru, oraz wyszukiwanie elementu, na
przykład według jakiegoś klucza, który jest cechą lub składnikiem elementu.

Ale w konkretnym zastosowaniu zbiór danych może wymagać użycia bardziej
wyspecjalizowanych operacji, czego przykładem może być znajdowanie i/lub usuwanie
elementu maksymalnego, ze strukturą danych dostosowaną do łatwego wykonywania
tych operacji w postaci kopców. Zatem dobra, efektywna implementacja struktury
danych do danego zastosowania może zależeć od operacji jakie chcemy na tych danych
wykonywać.

Elementarne struktury danych 1



Tablice
Tablice (arrays) są strukturą danych w większości języków programowania zapisaną
w ciągłym obszarze pamięci, gdzie poszczególne elementy tablicy identyfikowane są za
pomocą indeksu. Tablice mogą być indeksowane począwszy od 0, albo od 1, albo za
pomocą jeszcze inaczej wybranego zakresu indeksów.

Tablice mogą być jedno- lub wielowymiarowe, przy czym na przykład język
programowania ANSI C traktuje tablice wielowymiarowe jako tablice tablic.
W podręczniku CLRS tablice nominalnie są zawsze jednowymiarowe, a dla przypadków
wielowymiarowych stosuje się określenie macierzy (matrix/matrices). Tu nie będziemy
stosować tego rozróżnienia, dopuszczając tablice zarówno jedno- jaki wielowymiarowe.

Podstawowym założeniem i własnością tablic jako struktur danych, w większości
implementacji, jest, że ich elementy są jednakowego rozmiaru. Wynika z tego
możliwość obliczania adresów wszystkich elementów tablicy w jednolity sposób, a więc
dostęp do każdego elementu nawet bardzo dużej tablicy zajmuje czas stały, niezależny
od jej rozmiaru.

Istnieje szereg wariantów implementacji tablic wielowymiarowych, ale w większości
zachowują one tę zasadę stałego czasu dostępu do każdego elementu (przy założeniu,
że liczba wymiarów tablicy jest ograniczona, a nie np. rośnie wraz z liczbą elementów).

Elementarne struktury danych 2



Stosy

Stos jest uporządkowaną listą elementów, w której dostęp jest możliwy tylko do
ostatnio wprowadzonego elementu. Nazwa stosu ma nawiązywać do stosu talerzy, do
którego ma sens jedynie dodawać nowe elementy na wierzch, bez ruszania już
zawartych na stosie, albo zdejmować wyłącznie z wierzchu. Operację dodawania
elementu do stosu tradycyjnie nazywa się Push a usuwania ostatniego elementu Pop.

Mówi się o „dyscyplinie stosowej” (LIFO: Last-In-First-Out) w odniesieniu do sytuacji,
kiedy kolejność przetwarzania elementów jest odwrotna do kolejności ich pojawienia się.

Stos można zaimplementować za pomocą tablicy, która posiada atrybuty S.top
zawierający indeks ostatniego elementu stosu, lub 0 gdy stos jest pusty, oraz S.size
określający rozmiar tablicy, czyli pojemność stosu. Następujący rysunek ilustruje
przykładowy początkowy stan stosu (a), stan stosu po dodaniu kolejno elementów 17 i
3 (b), i po usunięciu elementu 17 (c):

Elementarne struktury danych 3



Interfejs tak implementowanego stosu odzwierciedla następujący pseudokod:

Stack-Empty(S)
1 if S.top == 0
2 return true
3 else return false

Push(S, x)
1 if S.top == S.size
2 error “overflow”
3 else S.top = S.top + 1
4 S[S.top] = x

Pop(S)
1 if Stack-Empty(S)
2 error “underflow”
3 else S.top = S.top − 1
4 return S[S.top + 1]

Inicjalizacja S.top = 0

Elementarne struktury danych 4



Wskaźnikowa implementacja stosu

Stack-Empty(S)
1 if S.top == NIL
2 return true
3 else return false

Push(S, x)
1 x.next = S.top
2 S.top = x

Pop(S)
1 if Stack-Empty(S)
2 error “underflow”
3 else S.top = NIL

Zakładamy tu, że tworzeniem elementów, tzn. alokacją ich pamięci, zajmuje się
program wywołujący.

Elementarne struktury danych 5



Elementarne struktury danych 6



Kolejki

W kolejce dostęp istnieje do elementu pierwszego, zwanego również głową (head)
kolejki, oraz ostatniego, zwanego ogonem (tail). Elementy dodawane do kolejki
ustawiane są zawsze za ogonem, i stają się nowym ogonem kolejki, natomiast elementy
usuwane brane są „z głowy”, tym samym odsłaniając nową głowę kolejki.

Analogicznie do dyscypliny stosowej LIFO, w przypadku kolejek mówimy o dyscyplinie
FIFO (First-In-First-Out).

Aby zaimplementować kolejkę za pomocą tablicy, trzeba zwrócić uwagę, że
w odróżnieniu od stosu, próba zapełnienia początkowego zakresu tablicy elementami
kolejki prowadzi do bardzo nieefektywnej implementacji, kiedy co prawda dodanie
elementu na koniec kolejki jest łatwe, ale usunięcie pierwszego elementu będzie
wymagało przesunięcia (przepisania) wszystkich elementów o jedną pozycję.

Zamiast tego, poprawna i efektywna implementacja kolejki
w tablicy wykorzystuje strukturę bufora kołowego (circular
buffer/ring buffer). Kolejne elementy są dodawane na koniec
kolejki, a początkowe elementy usuwane. Początek kolejki nie
przypada zawsze w pierwszym elemencie tablicy, tylko „kroczy”.
Po zapełnieniu tablicy elementy są wypełniane od początku.

Elementarne struktury danych 7



Przykładowe operacje na kolejce: stan kolejki z elementami 15,6,9,8,4 na pozycjach
tablicy od 7 do 11 (a), stan kolejki po dodaniu kolejno elementów: 17, 3, i 5 (b), i stan
po usunięciu (pierwszego) elementu (c):

Elementarne struktury danych 8



Enqueue(Q, x)
1 Q[Q.tail] = x
2 if Q.tail == Q.size
3 Q.tail = 1
4 else Q.tail = Q.tail + 1

Dequeue(Q)
1 x = Q[Q.head]
2 if Q.head == Q.size
3 Q.head = 1
4 else Q.head = Q.head + 1
5 return x

Uwaga: inicjalizacja Q.head = Q.tail = 1

Powyższy pseudokod ignoruje wyjątki, czyli próbę usunięcia elementu z pustej kolejki,
oraz próbę dodania elementu do pełnej.
Ćwiczenie: uzupełnij powyższy pseudokod o obsługę tych wyjątków, podobnie jak
w przypadku stosów.

Elementarne struktury danych 9



Wskaźnikowa implementacja kolejki

Elementarne struktury danych 10



Listy wskaźnikowe

Listy wskaźnikowe zawierają ciąg elementów połączony wskaźnikami. Nie
rozpatrujemy tablicowej implementacji listy, ponieważ nie różni się ona niczym od
tablicy jako takiej.

Przykład listy dwukierunkowej (a) z elementami 9, 16, i 1, (b) po wykonaniu
operacji List-Prepend(L, x), gdzie x.key = 25, (c) po wykonaniu operacji
List-Insert(x, y), gdzie x.key = 36, a y jest wskaźnikiem do elementu listy
zawierającego klucz 9, (d) po wywołaniu List-Delete(L, x), gdzie jest wskaźnikiem
do elementu listy zawierającego klucz 4:

Elementarne struktury danych 11



Elementarne struktury danych 12



List-Search(L, k)
1 x = L.head
2 while x ̸= NIL and x .key ̸= k
3 x = x .next
4 return x

List-Prepend(L, x)
1 x.next = L.head
2 x.prev = NIL
3 if L.head ̸= NIL
4 L.head.prev = x
5 L.head = x

List-Insert(x, y)
1 x.next = y.next
2 x.prev = y
3 if y.next ̸= NIL
4 y.next.prev = x
5 y.next = x

List-Delete(L, x)
1 if x.prev ̸= NIL
2 x.prev.next = x.next
3 else L.head = x.next
4 if x.next ̸= NIL
5 x.next.prev = x.prev

Elementarne struktury danych 13



Warianty list, listy z wartownikiem
Powyższy przykład listy dwukierunkowej jest jednym z wielu możliwych wariantów list.
Listy mogą być połączone jedno- lub dwukierunkowo, mogą być uporządkowane lub nie.

Jako specjalny przypadek rozważymy listy z wartownikiem. Zauważmy najpierw, że
kod procedury List-Delete mógłby być znacznie prostszy, gdyby nie konieczność
każdorazowego sprawdzania warunków brzegowych:

List-Delete(L, x)
1 if x.prev ̸= NIL
2 x.prev.next = x.next
3 else L.head = x.next
4 if x.next ̸= NIL
5 x.next.prev = x.prev

List-Delete’(L, x)
1 x.prev.next = x.next
2 x.next.prev = x.prev

Taka implementacja byłaby możliwa, gdybyśmy mieli pewność, że lista nigdy nie będzie
pusta. Jest możliwa prosta modyfikacja listy dwukierunkowej w dwukierunkową listę
cykliczną z wartownikiem. Taka lista zawsze zawiera jeden nadmiarowy, całkowicie
sztuczny element, zwany wartownikiem, który zastępuje wartość NIL.

Elementarne struktury danych 14



Lista z wartownikiem — przykład

Przykładowe operacje na dwukierunkowej liście cyklicznej z wartownikiem: (a) pusta
lista, (b) lista podobna jak w poprzednich przykładach, z elementami: 9, 16, 4, i 1, (c)
lista po wywołaniu List-Insert’(x, L.nil) gdzie x.key = 25; ponieważ nowy
element wstawiany jest bezpośrednio za wartownikiem, to staje się pierwszym
elementem listy, (d) lista po usunięciu elementu z kluczem 1, (e) lista po wywołaniu
List-Insert’(x, y) gdzie x.key = 36 i y jest wskaźnikiem do elementu z kluczem 9:

Elementarne struktury danych 15



Listy z wartownikiem — dodawanie elementu

Zastosowanie listy z wartownikiem upraszcza również nieco procedurę List-Insert:

List-Insert(x, y)
1 x.next = y.next
2 x.prev = y
3 if y.next ̸= NIL
4 y.next.prev = x
5 y.next = x

List-Insert’(x, y)
1 x.next = y.next
2 x.prev = y
3 y.next.prev = x
4 y.next = x

Elementarne struktury danych 16



Listy z wartownikiem — przeszukiwanie
Przeszukiwanie listy z wartownikiem jest podobne do zwykłej listy nieuporządkowanej,
jednak można w nim osiągnąć skrócenie czasu wykonania. Oryginalna procedura
List-Search wykonuje w wierszu 2 dwa porównania: pierwsze sprawdza koniec listy,
i drugie, czy został znaleziony poszukiwany element. W przypadku listy z wartownikiem
pierwsze sprawdzenie można pominąć, ale wtedy, w przypadku braku na liście elementu
z poszukiwanym kluczem, procedura „zawinie się” na końcu listy i będzie kręciła się
w kółko. Aby tego uniknąć, można wpisać poszukiwany klucz do wartownika
zapewniając, że na pewno zostanie znaleziony, co zatrzyma przeszukiwanie:

List-Search(L, k)
1 x = L.head
2 while x ̸= NIL and x .key ̸= k
3 x = x .next
4 return x

List-Search’(L, k)
1 L.nil.key = k // store the key in the sentinel to guarantee it is in list
2 x = L.nil.next // start at the head of the list
3 while x .key ̸= k
4 x = x .next
5 if x == L.nil // found k in the sentinel
6 return NIL // k was not really in the list
7 else return x // found k in element x

Elementarne struktury danych 17



Listy z wartownikiem — podsumowanie

Listy z wartownikiem są przykładem struktury danych, która kosztem minimalnej
rozbudowy struktury pozwala uprościć kod stosowanych funkcji, a także przyspieszyć
podstawową operację przeszukiwania całej listy (ale jest to przyspieszenie tylko o stały
współczynnik, bez poprawy złożoności asymptotycznej).

Jednak o ile w przypadku intensywnie wykorzystywanych list zastosowanie takiej
struktury jak najbardziej ma sens, to nie zawsze jest uzasadnione. Na przykład, gdy
program często tworzy niewielkie listy, i potem je kasuje, to narzut na dodatkową
pamięć i utworzenie listy z wartownikiem może niwelować ewentualne zyski.

Elementarne struktury danych 18



Drzewa binarne

Listy są dobrą reprezentacją kolekcji elementów, które naturalnie układają się
w sekwencję. Jednak nie zawsze jedyną relacją jaką chcemy odzwierciedlić w strukturze
danych jest sekwencja. Poniższy rysunek przedstawia drzewo binarne zbudowane
z jednakowych obiektów zawierających wskaźniki do lewego i prawego poddrzewa, oraz
wskaźnik do rodzica. Umieszczenie wszystkich tych wskaźników w każdym elemencie
pozwala na łatwe przeglądanie drzewa w dowolnym porządku. Podobnie jak ze
wskaźnikami do poddrzew, pusty wskaźnik do rodzica wskazuje, że dany węzeł nie ma
rodzica, czyli jest korzeniem drzewa. Rysunek nie pokazuje pól na klucz i pozostałe
dane przechowywane w każdym elemencie drzewa:

Elementarne struktury danych 19



Drzewa wskaźnikowe z dowolną liczbą podgałęzi

Można zastosować podobne podejście jak do drzew binarnych aby budować drzewa
o dowolnej arności. Jednak wtedy określona liczba poddrzew danego węzła
determinuje ile wskaźników do poddrzew musi być pamiętanych w każdym węźle. Nie
może być ich więcej, a jeśli będzie mniej, to niektóre będą musiały być puste.
Alternatywnie, poniższy rysunek ilustruje ciekawy schemat reprezentacji drzew
niebinarnych, zwany lewy-potomek, prawy-brat. Ten schemat dopuszcza dowolną
liczbę potomków każdego węzła wykorzystując pamięć O(n) dla drzewa o n węzłach:

Elementarne struktury danych 20



Krótkie podsumowanie — pytania sprawdzające

1. Wyjaśnij jak zaimplementować dwa stosy w jednej tablicy A[1 : n] aby do
przepełnienia któregoś z nich dochodziło dopiero wtedy, gdy łączna liczba
elementów w obu stosach osiąga n. Procedury Push i Pop powinny działać
w czasie O(1).

2. Uzupełnij procedury Enqueue i Dequeue o wykrywanie błędów niedomiaru
i przepełnienia.

3. Zaimplementuj stos (napisz jego pseudokod) za pomocą listy jednokierunkowej
(w której węzły nie zawierają wskaźnika prev. Operacje Push i Pop powinny
działać w czasie O(1). Czy konieczne jest dodanie w tym celu jakichś atrybutów do
listy?

4. Napisz rekurencyjną procedurę (pseudokod) działającą w czasie O(n), która dla
danego drzewa binarnego o n węzłach wypisuje wszystkie jego klucze.

5. Napisz rekurencyjną procedurę (pseudokod) działającą w czasie O(n), która
wypisuje wszystkie klucze danego drzewa o n węzłach, pamiętanego w reprezentacji
lewy-potomek, prawy-brat.

Elementarne struktury danych — podsumowanie 21



Literatura i materiały pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Wprowadzenie do algorytmów, PWN, 2024, rozdział 10.

Elementarne struktury danych — literatura 22


