
Problem najkrótszych ścieżek z jednego źródła
Znajdowanie najkrótszych ścieżek pomiędzy węzłami grafu jest jednym z ważnych
problemów praktycznych. Przykładowym zastosowaniem mogą być systemy nawigacji
satelitarnej, które dla ustalonego położenia znajdują najkrótsze połączenie do innego
położenia w sieci drogowej (lub rowerowej, itp.). Sieć dróg może być przedstawiona za
pomocą grafu, którego węzłami są wszystkie połączenia lub skrzyżowania dróg,
a łukami wszystkie odcinki dróg pomiędzy takimi połączeniami.

Jednak w praktyce każda nietrywialna sieć drogowa zawiera wiele tysięcy takich
skrzyżowań i odcinków między nimi, i znalezienie najkrótszej ścieżki pomiędzy nawet
niezbyt odległymi od siebie miejscami, które dzieli np. kilkanaście lub kilkadziesiąt
skrzyżowań, może być nietrywialne, o ile algorytm będzie systematycznie analizował
wszystkie możliwe ścieżki z pierwotnego położenia. Widać więc, że efektywny algorytm
znajdowania takich połączeń byłby bardzo przydatny.

Definiujemy więc problem najkrótszych ścieżek w następujący sposób. Mamy dany
graf skierowany G = (V, E) z wagami określonymi funkcją w : E → R przypisującą
każdemu łukowi grafu wagę. Funkcja w jest następnie rozszerzona dla ścieżek w ten
sposób, że dla każdej ścieżki p = ⟨v0, v1, ..., vk⟩ jej waga jest sumą wag wszystkich
łuków ścieżki:

w(p) =
k∑

i=1
w(vi−1, vi)

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 1



Waga najkrótszej ścieżki δ(u, v) z węzła u do v jest określona przez:

δ(u, v) =


min{w(p) : u
p
; v} jeśli istnieje ścieżka z u do v

∞ w przeciwnym wypadku

Najkrótszą ścieżką z węzła u do v jest każda ścieżka p, której waga w(p) = δ(u, v).
Celem jest znalezienie najkrótszej ścieżki w grafie z określonego wierzchołka do innego
określonego wierzchołka.

Zauważmy, że poznany wcześniej algorytm przeszukiwania wszerz znajduje najkrótsze
ścieżki z wybranego wierzchołka grafu bez wag. W takim grafie można uważać że
wszystkie ścieżki posiadają identyczną jednostkową wagę. Poszukiwany algorytm będzie
zatem jakby rozszerzeniem przeszukiwania wszerz, uwzględniającym zmienne wagi
łuków.

Określenie „najkrótsza ścieżka” przypisuje wagom łuków znaczenie długości.
Rzeczywiście, wagi połączeń w grafie mogą reprezentować odległości w sieci drogowej.
Ale mogą również reprezentować inne metryki połączeń, których wartości dodają się na
ścieżkach w grafie, takiej jak: czas przejazdu, zużycie paliwa, koszt przejazdu, itp.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 2



Optymalna podstruktura problemu

Można udowodnić, że jeśli pewna ścieżka p = ⟨v0, v1, ..., vk⟩ jest najkrótszą ścieżką
pomiędzy węzłami v0 i vk to dla każdej pary węzłów vi, vj na tej ścieżce, takimi, że
0 ≤ i ≤ j ≤ k, fragment ścieżki p pomiędzy tymi węzłami pij = ⟨vi, vi+1, ..., vj⟩ jest
najkrótszą ścieżką z vi do vj.

Mówiąc obrazowo, wszystkie fragmenty najkrótszej ścieżki są same w sobie również
najkrótszymi ścieżkami.

Ta własność świadczy o optymalnej substrukturze problemu najkrótszych ścieżek,
która była jedną z przesłanek do zastosowania programowania dynamicznego, i/lub
algorytmów zachłannych. I rzeczywiście, oba te podejścia mają zastosowanie
w znajdowaniu najkrótszych ścieżek. Algorytm Dijkstry przedstawiony poniżej jest
algorytmem zachłannym.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 3



Ujemne wagi połączeń
Jeśli w rozważanym grafie pewne ścieżki mają ujemne wagi to stanowi to pewien
problem dla problemu najkrótszych ścieżek. Problemem są nie tyle indywidualne
ujemne wagi, co możliwość istnienia cyklu o ujemnej wadze na jakiejkolwiek ścieżce
z rozważanego wierzchołka. Jeśli pomiędzy dwoma wierzchołkami u, v istnieje ścieżka
zawierająca taki cykl, to nie istnieje pomiędzy nimi ścieżka najkrótsza. Albowiem
podążając tym cyklem wielokrotnie można dowolnie zmniejszać wagę ścieżki między
nimi. Dla takich wierzchołków określamy δ(u, v) = −∞.

Problem widać na powyższym przykładowym grafie. Istnieją ścieżki z węzła s do
węzłów e, f, g zawierające cykl o ujemnej wadze pomiędzy e i f . Dlatego mamy
δ(s, e) = δ(s, f ) = δ(s, g) = −∞. Jednocześnie, wierzchołki h, i, j są nieosiągalne
z s, zatem zgodnie z definicją δ(s, h) = δ(s, i) = δ(s, j) = ∞, pomimo iż pomiędzy
tymi węzłami istnieje cykl o ujemnej wadze.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 4



Cykle w najkrótszych ścieżkach

Wiemy już, że najkrótsze ścieżki nie mogą zawierać cykli o wadze ujemnej. Pytanie
jednak, czy mogą zawierać jakiekolwiek cykle.

Gdyby najkrótsza ścieżka pomiędzy pewnymi węzłami zawierała cykl o wadze
dodatniej, to możnaby utworzyć nową poprawną ścieżkę między tymi samymi węzłami
przez wycięcie z niej tego cyklu. Ale wtedy nowa ścieżka miałaby wagę mniejszą niż
pierwotna, a zatem tamta nie mogłaby być najkrótsza.

Zatem żadna najkrótsza ścieżka na pewno nie zawiera cyklu o wadze dodatniej.

Pozostaje jednak możliwość istnienia w najkrótszej ścieżce cyklu o wadze równej zero.
Po wycięciu tego cyklu ze ścieżki, nowa ścieżka również byłaby poprawną ścieżką
pomiędzy tymi samymi węzłami, i tak samo jak pierwotna ścieżka byłaby najkrótsza.

Dla uproszczenia, i wprowadzenia pewnej jednoznaczności, będziemy zakładać, że
najkrótsze ścieżki nie zawierają cykli.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 5



Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 6



Reprezentacja najkrótszych ścieżek

Rozwiązaniem problemu najkrótszych ścieżek powinien być rozkład długości
najkrótszych ścieżek z określonego wierzchołka do innego wybranego wierzchołka (lub
wybranych wierzchołków). Algorytmy przedstawione w tej prezentacji obliczają te
długości dla wszystkich pozostałych wierzchołków grafu.

Jednak same długości ścieżek są niewystarczające. Dla wielu zastosowań potrzebne jest
również efektywne wyznaczanie tych najkrótszych ścieżek. Dla ścieżki do jednego
wierzchołka docelowego wynikiem pracy algorytmu mogłaby być sekwencja łuków (lub
wierzchołków) najkrótszej ścieżki ze źródła do celu. Jednak jeśli wynikiem mają być
najkrótsze ścieżki do wielu wierzchołków, to ta postać rozwiązania jest niepraktyczna.

Będziemy stosować rozwiązanie analogiczne do tego wykorzystanego w algorytmie
przeszukiwania wszerz, to znaczy tworzenia w każdym węźle v atrybutu v.π
stanowiącego wskaźnik (identyfikator) poprzednika węzła v na najkrótszej ścieżce
z globalnego źródła.

Atrybuty π są inicjalizowane wartością nil, a następnie w trakcie pracy algorytmu
przyjmują wartości innych węzłów grafu. W trakcie pracy algorytmu (każdego z dwóch
przedstawionych poniżej) ustawiona wartość atrybutu π wskazuje na poprzednik węzła
na jakiejś ścieżce od źródła do tego węzła. Jednak do momentu zakończenia algorytmu
może nie być to ścieżka najkrótsza.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 7



Atrybuty π tworzone przez algorytm generują graf poprzedników Gπ = (Vπ, Eπ):

Vπ = {v ∈ V : v.π ̸= nil} ∪ {s} ,

Eπ = {(v.π, v) ∈ E : v ∈ Vπ − {s}} .

Drzewa przeszukiwania wszerz poznane wcześniej stanowiły również grafy
poprzedników. Analogicznie do tych drzew zdefiniujemy obecnie drzewo
najkrótszych ścieżek dla skierowanego grafu G = (V, E) i korzeniu s jako
skierowany graf G′ = (V ′, E ′), gdzie V ′ ∈ V i E ′ ∈ E, takie że:

1. V ′ jest zbiorem wierzchołków w G osiągalnych z s,
2. G′ jest drzewem z korzeniem w s,
3. dla każdego wierzchołka v ∈ V ′ jedyna prosta ścieżka z s do v w G′ jest najkrótszą

ścieżką z s do v w G..

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 8



Drzewa najkrótszych ścieżek nie muszą być unikalne, podobnie jak najkrótsze ścieżki.
Dla danego grafu i wybranego źródła może istnieć jedno lub więcej takich drzew.

Poniższy rysunek przedstawia przykładowy skierowany graf z wagami (a), w którym
liczby w węzłach reprezentują wagę najkrótszej ścieżki z s do danego węzła. Rysunki
(b) i (c) przedstawiają kolorem niebieskim dwa różne drzewa najkrótszych ścieżek dla
tego grafu ze źródłem s:

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 9



Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 10



Relaksacja

Przed przedstawieniem konkretnych algorytmów warto wprowadzić pewne elementarne
procedury w nich wykorzystywane.

Poza atrybutem π reprezentującym poprzednika będziemy wykorzystywać atrybut
d reprezentujący długość najkrótszej ścieżki z wybranego źródła do danego węzła.
Podobnie jak wartość atrybutu π, w czasie pracy algorytmu wartość tego atrybutu
może nie być równa długości najkrótszej ścieżki z s, lecz zawsze będzie jej
ograniczeniem górnym. Oba atrybuty należy zainicjalizować za pomocą poniższej
procedury Initialize-Single-Source:

Initialize-Single-Source(G, s)
1 for each vertex v ∈ G.V
2 v.d = ∞
3 v.π = nil
4 s.d = 0

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 11



Procedura relaksacji krawędzi skierowanej (u, v) polegać będzie na sprawdzeniu, czy
najkrótsza ścieżka z globalnego źródła s do wierzchołka v nie byłaby krótsza, gdyby
prowadziła przez tę krawędź.

Ilustruje to poniższy rysunek. W przypadku (a) widać, że mając najkrótszą ścieżkę z s
do u o długości 5, i aktualnie najkrótszą ścieżkę z s do v o długości 9, można uzyskać
krótszą ścieżkę z s do v prowadzącą przez wierzchołek u i relaksowaną krawędź. Nowa
najkrótsza ścieżka z s do v będzie miała długość 7.

Jednocześnie na rysunku (b) widać, że procedura relaksacji krawędzi (u, v) w tym
przypadku nic nie zmieni, ponieważ ścieżka z s do v biegnąca przez wierzchołek u nie
będzie krótsza niż najkrótsza znana obecnie ścieżka o długości 6.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 12



Relax(u, v, w)
1 if v.d > u.d + w(u, v)
2 v.d = u.d + w(u, v)
3 v.π = u

Oba algorytmy przedstawione poniżej najpierw inicjalizują wymienione atrybuty za
pomocą powyższej procedury Initialize-Single-Source, a następnie
powtarzalnie aktualizują je za pomocą procedury relaksacji.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 13



Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 14



Własności najkrótszych ścieżek i relaksacji

Poniższe własności zakładają, że graf został zainicjalizowany procedurą
Initialize-Single-Source, oraz, że wszelkie zmiany atrybutów π i d nastąpiły
wskutek zastosowania sekwencji kroków relaksacji.

Nierówność trójkąta
Dla każdej krawędzi (u, v) ∈ E zachodzi δ(s, v) ≤ δ(s, u) + w(u, v)

Własność górnego ograniczenia
Dla wszystkich wierzchołków v ∈ V zawsze zachodzi v.d ≥ δ(s, v).
Ponadto, od momentu gdy v.d osiąga wartość δ(s, v), nie ulega już zmianie.

Własność braku ścieżki
Jeśli nie istnieje ścieżka z s do v, to zawsze zachodzi v.d = δ(s, v) = ∞.

Własność zbieżności
Jeśli dla pewnych wierzchołków u, v ∈ V p = s ; u → v jest najkrótszą ścieżką
w grafie G = (V, E), i jeśli w dowolnej chwili przed relaksacją krawędzi (u, v)
zachodzi u.d = δ(s, u), to po jej relaksacji już zawsze będzie v.d = δ(s, v).

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 15



Własność relaksacji dla ścieżki
Jeśli p = ⟨vo, v1, ..., vk⟩ jest najkrótszą ścieżką z s = v0 do vk, i krawędzie ścieżki p
są relaksowane w kolejności (v0, v1), (v1, v2), ..., (vk−1, vk), to vk.d = δ(s, vk).
Ta własność zachodzi niezależnie od innych kroków relaksacji, nawet
przemieszanych z relaksacją krawędzi ścieżki p.

Własność podgrafu poprzedników
Od momentu gdy v.d = δ(s, v) dla wszystkich v ∈ V , podgraf poprzedników jest
drzewem najkrótszych ścieżek z korzeniem w s.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 16



Algorytm Bellmana-Forda

Algorytm Bellmana-Forda rozwiązuje problem najkrótszych ścieżek z jednego źródła.
Algorytm działa w przypadku ogólnym, to znaczy również dla grafu z ujemnymi
wagami ścieżek. Jednocześnie algorytm sprawdza, czy ze źródła nie jest osiągalna jakaś
ścieżka zawierająca cykl o ujemnej wadze. Jeśli taka ścieżka istnieje, to nie jest
możliwe wyznaczenie wszystkich najkrótszych ścieżek. Gdy takiej ścieżki nie ma, to
algorytm oblicza wszystkie najkrótsze ścieżki i ich wagi.

Bellman-Ford(G, w, s)
1 Initialize-Single-Source(G, s)
2 for i = 1 to |G.V | − 1
3 for each edge (u, v) ∈ G.E
4 Relax(u, v, w)
5 for each edge (u, v) ∈ G.E
6 if v.d > u.d + w(u, v)
7 return false
8 return true

Algorytm relaksuje krawędzie, zmniejszając stopniowo oszacowanie v.d najkrótszej
ścieżki z s do każdego v ∈ V , aż zostanie osiągnięta waga najkrótszej ścieżki δ(s, v).

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 17



Przykład wykonania algorytmu Bellmana-Forda na grafie ze źródłem s (a). Rysunki
(b)–(e) przedstawiają stan grafu po każdorazowym wykonaniu pętli for z wierszy 2–4
algorytmu. Krawędzie są przetwarzane w kolejności: (t, x), (t, y), (t, z), (x, t), (y, x),
(y, z), (z, x), (z, s), (s, t), (s, y). Węzły zawierają aktualne wartości d a niebieskie
krawędzie wskazują aktualne indeksy poprzedników π. Pomarańczowa obwódka
wskazuje węzły, których atrybuty uległy zmianie w wyniku relaksacji w danym kroku.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 18



Algorytm Bellmana-Forda jest niedeterministyczny, ponieważ pętla for w wierszu 3
wybiera łuki w nieokreślonej kolejności. W rezultacie różne wywołania algorytmu mogą
wygenerować różne rozwiązania.

Poprawność algorytmu Bellmana-Forda jest nieoczywista, a jej dowód jest nietrywialny.
Wykorzystuje on między innymi własność, że każda niezawierająca cyklu ścieżka
zawiera co najwyżej |V | − 1 krawędzi, oraz wymienione wcześniej własności relaksacji
dla ścieżki, i podgrafu poprzedników.

Czas wykonania algorytmu Bellmana-Forda wynosi O(V 2 + V E) dla grafów zapisanych
za pomocą list sąsiedztwa. Niekiedy wystarczających jest mniej niż |V | − 1 przebiegów
pętli z kroków 2–4, co jest przyczyną zapisu O(V 2 + V E) zamiast Θ(V 2 + V E).

W typowym przypadku gdy |E| = Ω(V ), można ten czas wykonania zapisać jako
O(V E).

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 19



Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 20



Algorytm Dijkstry
Algorytm Dijkstry również rozwiązuje problem najkrótszych ścieżek z jednego źródła,
ale zakłada nieujemność wag wszystkich krawędzi. Za to, przy dobrej implementacji,
algorytm Dijkstry ma czas działania lepszy niż algorytm Bellmana-Forda.

Algorytm Dijkstry można uważać za uogólnienie przeszukiwania wszerz na grafy
z wagami. W tamtym algorytmie kolejka chronologiczna FIFO była stosowana do
zapewnienia, że dłuższe ścieżki będą sprawdzane po tym jak sprawdzone zostaną,
wcześniej umieszczone w kolejce, ścieżki krótsze.

Obecnie nie możemy tak zrobić, ponieważ wszystkie ścieżki mają dowolnie wybrane
wagi, i jest możliwe, że później znaleziona ścieżka będzie miała krótszą odległość od
źródła. Dlatego zamiast kolejki chronologicznej FIFO zastosujemy obecnie kolejkę
priorytetową porządkowaną według znanej minimalnej odległości od źródła. W każdym
kroku algorytmu do analizy będzie wybierany węzeł o minimalnej odległości od źródła.

Podobnie jak zakres węzłów objętych przeszukiwaniem wszerz „rozlewa się” po grafie
jednostkowymi krokami, w algorytmie Dijkstry ten zakres rozszerza się wzdłuż
najkrótszych ścieżek, nigdy nie przekraczając węzła o danej szacowanej odległości od
źródła, gdy nie są sprawdzone łuki z innego węzła o mniejszej szacowanej odległości od
źródła.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 21



Dijkstra(G, w, s)
1 Initialize-Single-Source(G, s)
2 S = ∅
3 Q = ∅
4 for each vertex u ∈ G.V
5 Insert(Q, u)
6 while Q ̸= ∅
7 u = Extract-Min(Q)
8 S = S ∪ {u}
9 for each vertex v ∈ G.Adj [u]

10 Relax(u, v, w)
11 if the call of Relax decreased v.d
12 Decrease-Key(Q,v,v.d)

Algorytm jest zachłanny, ponieważ w każdym przebiegu pętli while w wierszach 6—12
wybiera węzeł o najkrótszej odległości od źródła, i relaksuje łuki do jego sąsiadów, być
może aktualizując ich odległość od źródła. Zbiór S = V − Q zawiera wszystkie węzły
u, którym zostały już zrelaksowane krawędzie z u do wszystkich ich sąsiadów. Można
udowodnić, że oszacowanie u.d = δ(s, u) już w momencie dodawania węzła u do
zbioru S.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 22



Przykład analizy algorytmem Dijkstry grafu na rysunku (a) ze źródłem s. Węzły
zawierają oszacowanie najmniejszej odległości od źródła. Węzły koloru piaskowego
należą do kolejki Q i w kolejnych iteracjach pętli while na rysunkach (b)–(f) są
przenoszone do zbioru S stając się niebieskimi. Niebieskie łuki wyznaczają poprzedniki
węzłów. Węzły podświetlone na pomarańczowo oznaczają wybrane minima z kolejki,
a łuki podświetlone na pomarańczowo wskazują że wartość d i wskaźnik poprzednika π
uległy zmianie w następniku tego łuku.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 23



Podobnie jak algorytm Bellmana-Forda, algorytm Dijkstry jest niedeterministyczny,
i jego różne wywołania mogą wygenerować różne rozwiązania. Źródłem
niedeterminizmu jest zarówno wybór wierzchołków do relaksacji w pętli for w wierszu 9
algorytmu, jak również wybór wierzchołka przenoszonego z kolejki Q do zbioru S, o ile
istnieją w tej kolejce różne węzły o identycznym oszacowaniu d odległości od źródła.

Oszacowanie czasu wykonania algorytmu Dijkstry zależy od implementacji operacji na
kolejce Q. Przy prostej implementacji za pomocą zwykłej tablicy, czas wykonania
algorytmu wynosi O(V 2 + E) co dzięki własności E = O(V 2) można zapisać jako
O(V 2).

Jednak przy zastosowaniu stogu Fibonacciego do implementacji kolejki priorytetowej,
czas wykonania poprawia się do O(V log V + E).

Przykład grafu z ujemną
wagą, dla którego algorytm
Dijkstry obliczy złą wagę
ścieżki ze źródła A do B.

Algorytm Bellmana-Forda
zadziała tu normalnie
i obliczy poprawne wyniki.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 24



Znajdowanie wszystkich ścieżek z jednego źródła
W kontekście przedstawionego zastosowania w systemach nawigacji, i motywacji, że
poszukujemy algorytmu bardziej efektywnego, niż znajdowanie poszukiwanej trasy
przez próbowanie wszystkich możliwości, może wydawać się dziwne, że oba
przedstawione algorytmy znajdują najkrótsze ścieżki do wszystkich węzłów w grafie.

Czy nie byłoby prościej znaleźć tylko ścieżkę do jednego wybranego węzła docelowego?
Czy nie mogłoby to być bardziej efektywne?
Na przykład, mając mapę wszystkich połączeń drogowych w Europie, i chcąc znaleźć
najkrótszą drogę z Kutna do Zduńskiej Woli, czy nie ma prostszego sposobu?

Odpowiedź brzmi, że owszem, w konkretnym przypadku możemy zmodyfikować
algorytm Dijkstry aby zatrzymał się wcześniej (dokładnie: w momencie przenoszenia
Zduńskiej Woli do zbioru S), bez obliczania wszystkich najkrótszych ścieżek z Kutna
do wszystkich miejsc w Europie. Jednak trudno udowodnić, że algorytm Dijkstry z tą
modyfikacją będzie asymptotycznie szybszy niż w ogólności.

Albowiem algorytm relaksuje ścieżki, tzn. po znalezieniu jednej potencjalnie najkrótszej
ścieżki do danego węzła, sprawdza, czy nie ma innej ścieżki jeszcze krótszej. Tę
procedurę relaksacji można bezpiecznie zatrzymać dopiero wtedy, gdy mamy pewność,
że nie znajdzie się już żadna inna krótsza ścieżka do naszego celu.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 25



W przypadku algorytmu Bellmana-Forda sytuacja jest jeszcze gorsza, bo dopuszcza on
istnienie łuków z ujemnymi wagami. Mówiąc obrazowo, po sprawdzeniu, na przykład,
wszystkich ścieżek z Kutna do Zduńskiej Woli w obrębie Polski, i mając aktualnie
najkrótszą ścieżkę, nadal nie mamy gwarancji, że nie istnieje ścieżka prowadząca np.
przez Rzym, która dzięki odcinkowi o ujemnej wadze jest w stanie skrócić tę podróż.

A jak radzą sobie z tym prawdziwe systemy nawigacji?

Po pierwsze, nie biorą one pod uwagę wag ujemnych, a zatem punktem wyjścia jest dla
nich algorytm Dijkstry. Stosując opisany warunek wczesnego zatrzymania algorytmu
możemy uniknąć przeszukiwania całej Europy, ograniczając się do wszystkich ścieżek
długości około 100 kilometrów od Kutna (w tej odległości znajduje się Zduńska Wola).

Dodatkowo, systemy te mogą stosować pewne techniki z dziedziny sztucznej
inteligencji, i jeszcze bardziej usprawnić ten proces. Wkrótce przyjrzymy się tym
metodom.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła 26



Krótkie podsumowanie — pytania sprawdzające

1. Znajdź dwa drzewa najkrótszych ścieżek dla grafu z rysunku na stronie 9 inne niż te
pokazane na rysunkach.

2. Wykonaj algorytm Bellmana-Forda dla grafu z rysunku na stronie 18, przyjmując
wierzchołek z za źródło. W każdym przebiegu wykonaj relaksacje krawędzi w tym
samym porządku jaki został podany. Podaj wszystkie wartości d i π po każdym
przebiegu.
Następnie zmień wagę krawędzi (z, x) na 4 i wykonaj algorytm ponownie,
przyjmując tym razem za źródło wierzchołek s.

3. Wykonaj algorytm Dijkstry dla grafu z rysunku na str.9, najpierw przyjmując za
źródło wierzchołek s, a następnie wierzchołek z. W ten sam sposób jak na rysunku
na stronie 23 pokaż wartości d i π, oraz wierzchołki zbioru S po każdej iteracji pętli
while.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła — podsumowanie 27



Literatura i materiały pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Wprowadzenie do algorytmów, PWN, 2024, rozdział 22.

Grafy: znajdowanie najkrótszych ścieżek z jednego źródła — literatura 28


