Problem najkrotszych Sciezek z jednego zrodta

Znajdowanie najkrotszych sciezek pomiedzy weztami grafu jest jednym z waznych
probleméw praktycznych. Przyktadowym zastosowaniem moga by¢ systemy nawigacji
satelitarnej, ktére dla ustalonego potozenia znajduja najkrétsze potaczenie do innego
potozenia w sieci drogowej (lub rowerowej, itp.). Sie¢ drog moze by¢ przedstawiona za
pomoca grafu, ktérego weztami sg wszystkie potaczenia lub skrzyzowania drég,

a tukami wszystkie odcinki drog pomiedzy takimi potaczeniami.

Jednak w praktyce kazda nietrywialna sie¢ drogowa zawiera wiele tysiecy takich
skrzyzowan i odcinkow miedzy nimi, i znalezienie najkrotszej Sciezki pomiedzy nawet
niezbyt odlegtymi od siebie miejscami, ktére dzieli np. kilkanascie lub kilkadziesiagt
skrzyzowan, moze byc nietrywialne, o ile algorytm bedzie systematycznie analizowat
wszystkie mozliwe Sciezki z pierwotnego potozenia. Widac wiec, ze efektywny algorytm
znajdowania takich potgczen bytby bardzo przydatny.

Definiujemy wiec problem najkrotszych Sciezek w nastepujacy sposob. Mamy dany
graf skierowany G = (V, E') z wagami okre$lonymi funkcja w : £ — R przypisujaca
kazdemu tukowi grafu wage. Funkcja w jest nastepnie rozszerzona dla Sciezek w ten
sposob, ze dla kazdej Sciezki p = (vg, vy, ..., Ux) jej waga jest suma wag wszystkich
tukow Sciezki: .

w(p) = 2_ w(vi_1,v;)

1=1

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 1

Waga najkrotszej Sciezki §(u, v) z wezta u do v jest okreslona przez:

min{w(p) : u L v} jedli istnieje éciezka z u do v
00 w przeciwnym wypadku

o(u,v) =

Najkrétszg Sciezkg z wezta u do v jest kazda Sciezka p, ktérej waga w(p) = d(u, v).
Celem jest znalezienie najkrotszej Sciezki w grafie z okreslonego wierzchotka do innego
okreslonego wierzchoftka.

Zauwazmy, ze poznany wczesniej algorytm przeszukiwania wszerz znajduje najkrétsze
Sciezki z wybranego wierzchotka grafu bez wag. W takim grafie mozna uwazaé ze
wszystkie Sciezki posiadajg identyczng jednostkowag wage. Poszukiwany algorytm bedzie
zatem jakby rozszerzeniem przeszukiwania wszerz, uwzgledniajgcym zmienne wagi
tukow.

Okreslenie ,najkrétsza Sciezka” przypisuje wagom tukéw znaczenie dtugosci.
Rzeczywiscie, wagi pofaczen w grafie moga reprezentowac odlegtosci w sieci drogowe;j.
Ale moga réwniez reprezentowac inne metryki potaczen, ktérych wartosci dodajg sie na
Sciezkach w grafie, takiej jak: czas przejazdu, zuzycie paliwa, koszt przejazdu, itp.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 2

Optymalna podstruktura problemu

Mozna udowodnié, ze jesli pewna Sciezka p = (v, v1, ..., V) jest najkrétsza Sciezka
pomiedzy weztami vy i v;, to dla kazdej pary weztdw v;, v; na tej Sciezce, takimi, ze
0 <i < j <k, fragment Sciezki p pomiedzy tymi weztami p;; = (v;, Viy1, ..., v;) jest
najkrotsza sciezkg z v; do v;.

Méwigc obrazowo, wszystkie fragmenty najkrétszej Sciezki s3 same w sobie rowniez
najkrétszymi Sciezkami.

Ta wtasnos¢ swiadczy o optymalnej substrukturze problemu najkrotszych sciezek,
ktéra byta jedna z przestanek do zastosowania programowania dynamicznego, i/lub
algorytméw zachtannych. | rzeczywiscie, oba te podejScia majg zastosowanie

w znajdowaniu najkrotszych Sciezek. Algorytm Dijkstry przedstawiony ponizej jest
algorytmem zachtannym.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 3

Ujemne wagi potaczen

Jesli w rozwazanym grafie pewne $ciezki majg ujemne wagi to stanowi to pewien
problem dla problemu najkrétszych sciezek. Problemem s3 nie tyle indywidualne
ujemne wagi, co mozliwosc istnienia cyklu o ujemnej wadze na jakiejkolwiek Sciezce

z rozwazanego wierzchotka. Jesli pomiedzy dwoma wierzchotkami u, v istnieje Sciezka
zawierajaca taki cykl, to nie istnieje pomiedzy nimi Sciezka najkrotsza. Albowiem
podazajac tym cyklem wielokrotnie mozna dowolnie zmniejszaé wage Sciezki miedzy
nimi. Dla takich wierzchotkéw okreslamy §(u, v) = —o0.

Problem wida¢ na powyzszym przyktadowym grafie. Istniejg Sciezki z wezta s do
weztow e, f, g zawierajace cykl o ujemnej wadze pomiedzy e i f. Dlatego mamy
d(s,e) =4d(s, f) =0d(s,g) = —o0. Jednoczesnie, wierzchotki h, i, j s3 nieosiggalne
z s, zatem zgodnie z definicja d(s, h) = d(s,i) = d(s, j) = oo, pomimo iz pomiedzy
tymi weztami istnieje cykl o ujemnej wadze.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

Cykle w najkrotszych sciezkach

Wiemy juz, ze najkrotsze sciezki nie moga zawierac cykli o wadze ujemnej. Pytanie
jednak, czy moga zawierac jakiekolwiek cykle.

Gdyby najkrétsza Sciezka pomiedzy pewnymi weztami zawierata cykl o wadze
dodatniej, to moznaby utworzy¢ nowa poprawng Sciezke miedzy tymi samymi weztami
przez wyciecie z niej tego cyklu. Ale wtedy nowa Sciezka miataby wage mniejszg niz
pierwotna, a zatem tamta nie mogtaby byc¢ najkrétsza.

Zatem zadna najkrotsza Sciezka na pewno nie zawiera cyklu o wadze dodatnie;j.

Pozostaje jednak mozliwos¢ istnienia w najkrétszej sciezce cyklu o wadze rownej zero.
Po wycieciu tego cyklu ze Sciezki, nowa sciezka rowniez bytaby poprawng sciezka
pomiedzy tymi samymi weztami, i tak samo jak pierwotna Sciezka bytaby najkrotsza.

Dla uproszczenia, i wprowadzenia pewnej jednoznacznosci, bedziemy zaktadac, ze
najkrétsze Sciezki nie zawierajg cykli.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

Reprezentacja najkrotszych sciezek

Rozwigzaniem problemu najkrétszych sciezek powinien byc rozktad dtugosci
najkrétszych Sciezek z okre$lonego wierzchotka do innego wybranego wierzchotka (lub
wybranych wierzchotkéw). Algorytmy przedstawione w tej prezentacji obliczaja te
dtugosci dla wszystkich pozostatych wierzchotkéw grafu.

Jednak same dtugosci sciezek s3 niewystarczajace. Dla wielu zastosowan potrzebne jest
rowniez efektywne wyznaczanie tych najkrétszych Sciezek. Dla sciezki do jednego
wierzchotka docelowego wynikiem pracy algorytmu mogtaby by¢ sekwencja tukéw (lub
wierzchotkéw) najkrétszej Sciezki ze zrédta do celu. Jednak jesli wynikiem majg byé
najkrotsze Sciezki do wielu wierzchotkéw, to ta postac rozwigzania jest niepraktyczna.

Bedziemy stosowac rozwigzanie analogiczne do tego wykorzystanego w algorytmie
przeszukiwania wszerz, to znaczy tworzenia w kazdym wezle v atrybutu v.7
stanowigcego wskaznik (identyfikator) poprzednika wezta v na najkrotszej Sciezce
z globalnego zrodta.

Atrybuty 7 s3 inicjalizowane wartoscig NIL, a nastepnie w trakcie pracy algorytmu
przyjmuja wartosci innych weztéw grafu. W trakcie pracy algorytmu (kazdego z dwéoch
przedstawionych ponizej) ustawiona wartos¢ atrybutu m wskazuje na poprzednik wezta
na jakiejs sciezce od zrédta do tego wezta. Jednak do momentu zakonczenia algorytmu
moze nie by¢ to sciezka najkrotsza.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 7

Atrybuty 7 tworzone przez algorytm generuja graf poprzednikéw G, = (V, E,):

Vi = {veV .vrm#NL}U{s},
E, = {lvmv)eE:veV,—{s}}.

Drzewa przeszukiwania wszerz poznane wczesSniej stanowity rowniez grafy
poprzednikéw. Analogicznie do tych drzew zdefiniujemy obecnie drzewo

najkrotszych Sciezek dla skierowanego grafu G = (V, E) i korzeniu s jako
skierowany graf G' = (V' E'), gdzie V' € V i £/ € E, takie ze:

1. V' jest zbiorem wierzchotkéw w G osiggalnych z s,

2. (' jest drzewem z korzeniem w s,

3. dla kazdego wierzchotka v € V' jedyna prosta $ciezka z s do v w GG’ jest najkrétsza
sciezkg z sdov w G..

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 8

Drzewa najkrotszych sciezek nie muszg byc unikalne, podobnie jak najkrotsze Sciezki.
Dla danego grafu i wybranego zrédta moze istnie¢ jedno lub wiecej takich drzew.

Ponizszy rysunek przedstawia przyktadowy skierowany graf z wagami (a), w ktérym
liczby w weztach reprezentujg wage najkrotszej sciezki z s do danego wezfa. Rysunki
(b) i (c) przedstawiajg kolorem niebieskim dwa rézne drzewa najkroétszych Sciezek dla
tego grafu ze zrédtem s:

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 9

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

10

Relaksacja

Przed przedstawieniem konkretnych algorytméw warto wprowadzi¢ pewne elementarne
procedury w nich wykorzystywane.

Poza atrybutem 7 reprezentujagcym poprzednika bedziemy wykorzystywaé atrybut
d reprezentujacy dtugos¢ najkrotszej sciezki z wybranego zrédta do danego wezta.
Podobnie jak wartos¢ atrybutu 7, w czasie pracy algorytmu wartos¢ tego atrybutu
moze nie by¢ rowna dtugosci najkrotszej sciezki z s, lecz zawsze bedzie jej
ograniczeniem goérnym. Oba atrybuty nalezy zainicjalizowa¢ za pomoca ponizsze;
procedury INITIALIZE-SINGLE-SOURCE:

INITIALIZE-SINGLE-SOURCE(G, $)
1 for each vertex v € G.V

2 v.d = 00
3 V.1 = NIL
4 s.d=0

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 11

Procedura relaksacji krawedzi skierowanej (u, v) polegaé bedzie na sprawdzeniu, czy
najkrétsza Sciezka z globalnego zrédta s do wierzchotka v nie bytaby krétsza, gdyby
prowadzifa przez te krawedz.

llustruje to ponizszy rysunek. W przypadku (a) wida¢, ze majac najkrétsza Sciezke z s
do u o dtugosci 5, i aktualnie najkrétsza Sciezke z s do v o dfugosci 9, mozna uzyskac
krétszg sciezke z s do v prowadzacy przez wierzchotek wu i relaksowang krawedz. Nowa
najkrétsza Sciezka z s do v bedzie miata dfugosc 7.

u v u v

RELAX(u, v, w) RELAX(u, v, w)
u) v u) v
&——@ E——©
(a) (b)

Jednocze$nie na rysunku (b) widaé, ze procedura relaksacji krawedzi (u, v) w tym
przypadku nic nie zmieni, poniewaz Sciezka z s do v biegnaca przez wierzchotek u nie
bedzie krotsza niz najkrétsza znana obecnie Sciezka o dtugosci 6.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 12

RELAX (u, v, w)

1 if v.d > u.d+w(u,v)

2 v.d = u.d+ w(u,v)
3 VT = U

Oba algorytmy przedstawione ponizej najpierw inicjalizujg wymienione atrybuty za
pomocy powyzszej procedury INITIALIZE-SINGLE-SOURCE, a nastepnie
powtarzalnie aktualizujg je za pomoca procedury relaksac;ji.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

13

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

14

Wtasnosci najkrotszych sciezek i relaksacji

Ponizsze wtasnos$ci zaktadaja, ze graf zostat zainicjalizowany procedura
INITIALIZE-SINGLE-SOURCE, oraz, ze wszelkie zmiany atrybutéw 7 i d nastapity

wskutek zastosowania sekwencji krokéw relaksacji.

Nieréwnosc¢ trojkata
Dla kazdej krawedzi (u,v) € F zachodzi §(s,v) < 0(s,u) + w(u, v)

Wtasno$¢ gornego ograniczenia
Dla wszystkich wierzchotkéw v € V' zawsze zachodzi v.d > (s, v).

Ponadto, od momentu gdy v.d osigga wartos¢ (s, v), nie ulega juz zmianie.

WtasnoS¢ braku Sciezki
Jesli nie istnieje $ciezka z s do v, to zawsze zachodzi v.d = §(s,v) = oo.

WtasnosSc¢ zbieznoSci
Jesli dla pewnych wierzchotkow u,v € V' p = s ~ u — v jest najkrotszg Sciezka

w grafie G = (V, E), i jesli w dowolnej chwili przed relaksacja krawedzi (u, v)
zachodzi u.d = (s, u), to po jej relaksacji juz zawsze bedzie v.d = §(s, v).

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

Wtasnosc relaksacji dla Sciezki
Jesli p = (v,, vy, ..., v) jest najkrétsza Sciezka z s = vy do vy, i krawedzie $ciezki p
s3 relaksowane w kolejnosci (vg, v1), (v, va), ..., (Vg_1, Vk), to vi.d = (s, vy).
Ta wtasnosc¢ zachodzi niezaleznie od innych krokéw relaksacji, nawet
przemieszanych z relaksacja krawedzi Sciezki p.

Wtasnos$¢ podgrafu poprzednikéw
Od momentu gdy v.d = (s, v) dla wszystkich v € V, podgraf poprzednikéw jest
drzewem najkrotszych Sciezek z korzeniem w s.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 16

Algorytm Bellmana-Forda

Algorytm Bellmana-Forda rozwigzuje problem najkrotszych sciezek z jednego zrédta.
Algorytm dziata w przypadku ogdlnym, to znaczy réwniez dla grafu z ujemnymi
wagami Sciezek. Jednoczesnie algorytm sprawdza, czy ze zrodta nie jest osiggalna jakas
sciezka zawierajaca cykl o ujemnej wadze. Jesli taka Sciezka istnieje, to nie jest
mozliwe wyznaczenie wszystkich najkrotszych Sciezek. Gdy takiej Sciezki nie ma, to
algorytm oblicza wszystkie najkrotsze Sciezki i ich wagi.

BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 fori=1to|G.V|—1

3 for each edge (u,v) € G.E

4 RELAX (u, v, w)

5 for each edge (u,v) € G.E

6 if v.d > u.d+w(u,v)

7 return FALSE

8 return TRUE

Algorytm relaksuje krawedzie, zmniejszajac stopniowo oszacowanie v.d najkrétsze;
Sciezki z s do kazdego v € V/, az zostanie osiggnieta waga najkrotszej Sciezki 6(s, v).

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 17

Przyktad wykonania algorytmu Bellmana-Forda na grafie ze zrédtem s (a). Rysunki
(b)—(e) przedstawiaja stan grafu po kazdorazowym wykonaniu petli for z wierszy 2-4
algorytmu. Krawedzie s przetwarzane w kolejnosci: (¢, z), (¢,y), (¢, 2), (x, 1), (y, x),
(y,2),(z,x),(z,5),(s,t), (s,y). Wezty zawieraja aktualne wartosci d a niebieskie
krawedzie wskazuja aktualne indeksy poprzednikow 7. Pomaranczowa obwodka
wskazuje wezty, ktorych atrybuty ulegty zmianie w wyniku relaksacji w danym kroku.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 18

Algorytm Bellmana-Forda jest niedeterministyczny, poniewaz petla for w wierszu 3
wybiera tuki w nieokreslonej kolejnosci. W rezultacie rézne wywotania algorytmu moga
wygenerowac rézne rozwigzania.

Poprawnosc algorytmu Bellmana-Forda jest nieoczywista, a jej dowdd jest nietrywialny.
Wykorzystuje on miedzy innymi wtasnos¢, ze kazda niezawierajaca cyklu sciezka
zawiera co najwyzej |V| — 1 krawedzi, oraz wymienione wczesniej wtasnosci relaksacji
dla Sciezki, i podgrafu poprzednikow.

Czas wykonania algorytmu Bellmana-Forda wynosi O(V? + V E) dla graféw zapisanych
za pomoc3 list sasiedztwa. Niekiedy wystarczajacych jest mniej niz |V| — 1 przebiegéw
petli z krokéw 2-4, co jest przyczyng zapisu O(V? + V E) zamiast O(V? + V E).

W typowym przypadku gdy |E| = €2(V'), mozna ten czas wykonania zapisa¢ jako
O(VE).

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 19

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta

20

Algorytm Dijkstry

Algorytm Dijkstry rowniez rozwigzuje problem najkrétszych sciezek z jednego zrédta,
ale zaktada nieujemnos$¢ wag wszystkich krawedzi. Za to, przy dobrej implementac;ji,
algorytm Dijkstry ma czas dziatania lepszy niz algorytm Bellmana-Forda.

Algorytm Dijkstry mozna uwazaé za uogolnienie przeszukiwania wszerz na grafy
z wagami. W tamtym algorytmie kolejka chronologiczna FIFO byfa stosowana do
zapewnienia, ze dtuzsze Sciezki beda sprawdzane po tym jak sprawdzone zostang,
wczesniej umieszczone w kolejce, Sciezki krotsze.

Obecnie nie mozemy tak zrobié, poniewaz wszystkie Sciezki majg dowolnie wybrane
wagi, i jest mozliwe, ze pdzniej znaleziona Sciezka bedzie miata krotszg odlegtosc od
zrédfa. Dlatego zamiast kolejki chronologicznej FIFO zastosujemy obecnie kolejke
priorytetowg porzadkowang wedtug znanej minimalnej odlegtosci od zrodta. W kazdym
kroku algorytmu do analizy bedzie wybierany wezet o minimalnej odlegtosci od zrédta.

Podobnie jak zakres weztow objetych przeszukiwaniem wszerz ,rozlewa sie” po grafie
jednostkowymi krokami, w algorytmie Dijkstry ten zakres rozszerza sie wzdtuz
najkrétszych sciezek, nigdy nie przekraczajac wezta o danej szacowanej odlegtosci od
zrédfa, gdy nie s3 sprawdzone fuki z innego wezta o mniejszej szacowanej odlegtosci od
zrodfa.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 21

D1JKSTRA(G, w,)

1 INITIALIZE-SINGLE-SOURCE(G, $)

2 S =1

3 Q=10

4 for each vertex u € G.V

5 INSERT(Q, u)

6 while Q # ()

7 u = EXTRACT-MIN(Q)

8 S =SU{u}

9 for each vertex v € G.Adj|u]

10 RELAX(u, v, w)

11 if the call of RELAX decreased v.d
12 DECREASE-KEY(Q,v,v.d)

Algorytm jest zachfanny, poniewaz w kazdym przebiegu petli while w wierszach 6—12
wybiera wezet o najkrotszej odlegtosci od zrodta, i relaksuje tuki do jego sgsiadow, byé
moze aktualizujac ich odlegtos¢ od zrédta. Zbior S =V — () zawiera wszystkie wezty

u, ktorym zostaty juz zrelaksowane krawedzie z u do wszystkich ich sasiadéw. Mozna

udowodnié, ze oszacowanie u.d = §(s,u) juz w momencie dodawania wezta u do

zbioru S.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 22

Przyktad analizy algorytmem Dijkstry grafu na rysunku (a) ze zrédtem s. Wezty
zawierajg oszacowanie najmniejszej odlegtosci od zrodta. Wezty koloru piaskowego
naleza do kolejki) i w kolejnych iteracjach petli while na rysunkach (b)—(f) sa
przenoszone do zbioru S stajac sie niebieskimi. Niebieskie tuki wyznaczaja poprzedniki
weztdw. Wezty podswietlone na pomaranczowo oznaczajg wybrane minima z kolejki,

a tuki podswietlone na pomaranczowo wskazujg ze wartos¢ d i wskaznik poprzednika
ulegty zmianie w nastepniku tego tuku.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 23

Podobnie jak algorytm Bellmana-Forda, algorytm Dijkstry jest niedeterministyczny,

i jego rézne wywotania moga wygenerowaé rézne rozwiazania. Zrédtem
niedeterminizmu jest zarowno wybér wierzchotkow do relaksacji w petli for w wierszu 9
algorytmu, jak réwniez wybor wierzchotka przenoszonego z kolejki () do zbioru .S, o ile
istniejg w tej kolejce rozne wezty o identycznym oszacowaniu d odlegtosci od zrodta.

Oszacowanie czasu wykonania algorytmu Dijkstry zalezy od implementacji operacji na
kolejce (). Przy prostej implementacji za pomoca zwykfej tablicy, czas wykonania
algorytmu wynosi O(V? + E) co dzieki whasnoéci E = O(V?) mozna zapisaé jako
O(V3).

Jednak przy zastosowaniu stogu Fibonacciego do implementacji kolejki priorytetowej,
czas wykonania poprawia sie do O(V'logV + FE).

——

Przyktad grafu z ujemna = 1 5} |

waga, dla ktérego algorytm j___,____r . :Q_‘_k 11

Dijkstry obliczy ztg wage — * // = | \\\

sciezki ze zrodta A do B. A' ({_ 71;‘ =
s SEEEE S

Algorytm Bellmana-Forda | | =

zadziata tu normalnie | G £) —-—"’"::f:f

| obliczy poprawne wyniki. — e

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 24

Znajdowanie wszystkich Sciezek z jednego zrodta

W kontekscie przedstawionego zastosowania w systemach nawigacji, i motywacji, ze
poszukujemy algorytmu bardziej efektywnego, niz znajdowanie poszukiwanej trasy
przez prébowanie wszystkich mozliwosci, moze wydawac sie dziwne, ze oba
przedstawione algorytmy znajdujg najkrotsze sciezki do wszystkich weztéw w grafie.

Czy nie bytoby prosciej znalez¢ tylko Sciezke do jednego wybranego wezta docelowego?
Czy nie mogtoby to by¢ bardziej efektywne?

Na przykfad, majac mape wszystkich potaczen drogowych w Europie, i chcac znalezé
najkrétsza droge z Kutna do Zdunskiej Woli, czy nie ma prostszego sposobu?

Odpowiedz brzmi, ze owszem, w konkretnym przypadku mozemy zmodyfikowaé
algorytm Dijkstry aby zatrzymat sie wczesniej (doktadnie: w momencie przenoszenia
Zdunskiej Woli do zbioru S), bez obliczania wszystkich najkrétszych Sciezek z Kutna
do wszystkich miejsc w Europie. Jednak trudno udowodni¢, ze algorytm Dijkstry z ta
modyfikacja bedzie asymptotycznie szybszy niz w ogdlnosci.

Albowiem algorytm relaksuje sciezki, tzn. po znalezieniu jednej potencjalnie najkrétsze;
sciezki do danego wezta, sprawdza, czy nie ma innej Sciezki jeszcze krotszej. Te
procedure relaksacji mozna bezpiecznie zatrzymac dopiero wtedy, gdy mamy pewnos¢,
ze nie znajdzie sie juz zadna inna krotsza Sciezka do naszego celu.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 25

W przypadku algorytmu Bellmana-Forda sytuacja jest jeszcze gorsza, bo dopuszcza on
istnienie tukow z ujemnymi wagami. Méwiac obrazowo, po sprawdzeniu, na przyktad,
wszystkich Sciezek z Kutna do Zdunskiej Woli w obrebie Polski, i majac aktualnie
najkrétsza Sciezke, nadal nie mamy gwarancji, ze nie istnieje Sciezka prowadzaca np.
przez Rzym, ktora dzieki odcinkowi o ujemnej wadze jest w stanie skroci¢ te podroz.

A jak radza sobie z tym prawdziwe systemy nawigacji?

Po pierwsze, nie biorg one pod uwage wag ujemnych, a zatem punktem wyjscia jest dla
nich algorytm Dijkstry. Stosujac opisany warunek wczesnego zatrzymania algorytmu
mozemy unikng¢ przeszukiwania catej Europy, ograniczajac sie do wszystkich sciezek
dtugosci okoto 100 kilometréw od Kutna (w tej odlegtosci znajduje sie Zduniska Wola).

Dodatkowo, systemy te moga stosowaé pewne techniki z dziedziny sztucznej
inteligencji, i jeszcze bardziej usprawnic ten proces. Wkrotce przyjrzymy sie tym
metodom.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta 26

Krotkie podsumowanie — pytania sprawdzajgce

1. Znajdz dwa drzewa najkrotszych Sciezek dla grafu z rysunku na stronie [9) inne niz te
pokazane na rysunkach.

Wykonaj algorytm Bellmana-Forda dla grafu z rysunku na stronie [18, przyjmujac

wierzchotek z za zrédto. W kazdym przebiegu wykonaj relaksacje krawedzi w tym
samym porzadku jaki zostat podany. Podaj wszystkie wartosci d i m po kazdym

przebiegu.

Nastepnie zmien wage krawedzi (z, z) na 4 i wykonaj algorytm ponownie,
przyjmujac tym razem za zrédfo wierzchotek s.

. Wykonaj algorytm Dijkstry dla grafu z rysunku na str[9] najpierw przyjmujac za

zrédto wierzchotek s, a nastepnie wierzchotek z. W ten sam sposéb jak na rysunku

na stronie
while.

23

pokaz wartosci d i m, oraz wierzchotki zbioru S po kazdej iteracji petli

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta — podsumowanie 27

Literatura i materiaty pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Wprowadzenie do algorytmow, PWN, 2024, rozdziat 22.

Grafy: znajdowanie najkrétszych Sciezek z jednego zrédta — literatura

28

