Algorytmy

Algorytm jest przepisem na wykonanie jakichs obliczen. Celem tych obliczen jest
uzyskanie jakiego$ wyniku, oraz zwykle algorytm operuje na jakichs danych, ktére
muszg by¢ dostepne aby mozliwe byto wykonanie algorytmu i otrzymanie tego wyniku.

Przyktady algorytmow stosowanych w réznych dziedzinach:

algorytmy arytmetyczne — stosowane w komputerach do obliczania popularnych
funkcji matematycznych, takich jak: pierwiastki, logarytmy, funkcje
trygonometryczne, itp.

algorytmy grafowe — zastosowania w znajdowaniu $ciezek dla: nawigacji,
znajdowania tras w sieciach komputerowych, projektowaniu uktadéw VLSI, grach
komputerowych, itp.

algorytmy tekstowe — wyszukiwanie haset, indeksowanie, kompresja, itp.

algorytmy analizy matematycznej — przetwarzanie sygnatéw, filtracja,
transformacja obrazéw

algorytmy uczenia maszynowego — przetwarzanie wielkich zbioréw danych
w celu automatycznej budowy systemdw sztucznej inteligencji, ale réwniez analizy
danych, itp.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

Pseudokod

Zawarty w algorytmie przepis musi by¢ podany w sposéb jasny, precyzyjny,

| jednoznaczny. W literaturze zwigzanej z informatyka algorytmy zwyczajowo zapisuje
sie w tzw. pseudokodzie, czyli w pewnym abstrakcyjnym jezyku, podobnym do
popularnych jezykow programowania.

Na przyktad, pseudokod algorytmu sumowania elementow tablicy:

SUM-ARRAY (A, n)

1 sum =20

2 fori=1ton

3 sum = sum + Ali]
4 return sum

Zwréémy uwage:

e bloki instrukcji uwidocznione wcieciami

e instrukcje nie musza (ale moga) by¢ zakonczone $rednikiem

e zaktadamy numerowanie elementéw tablicy od 1 do N (ale gdy wygodne, mozemy
réwniez uzy¢ numeracji od 0 do N-1, odnotowujac to za pomoca komentarzy)

e w pseudokodzie moga pojawiac sie obiektowe atrybuty w stylu A.length

e zwykte, skalarne, parametry procedur sg przekazywane przez wartos¢, ale tablice
| obiekty jako parametry procedur przekazywane sg przez wskaznik

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

Zagadnienie sortowania

Jednym z waznych zagadnien, dla ktorych istnieje szereg waznych algorytmoéw jest
zagadnienie sortowania. Problem polega, dla danej na wejsciu sekwencji liczb, na
wygenerowaniu na wyjsciu algorytmu innej sekwencji, bedacej niemalejaca permutacja
sekwencji wejsciowej. Permutacja jest sekwencjg tych samych liczb, ale by¢é moze w
innym porzadku.

Koniecznosc sortowania zachodzi w wielu zastosowaniach praktycznych, i polega
zwykle na uporzadkowaniu zbioru bardziej ztozonych obiektéw, z ktorych kazdy
charakteryzuje pewna wielkos¢, zwana kluczem sortowania, wedtug ktérego ciag
powinien by¢ uporzadkowany.

Popularny, jeden z najprostszych algorytméw sortowania:

BUBBLE-SORT(A, n)

1 fortr=1ton—1

2 for) = n downto 7 + 1

3 if Alj] <Alj—1]

4 // zamien wartosci A|j] i Alj — 1]
5 tmp = Alj — 1]

6 Alj — 1] = Alj]

7 Alj] = tmp

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

Poprawnosc algorytmu sortowania

Dla kazdego algorytmu wazne jest w petni rygorystyczne wykazanie, ze algorytm jest
poprawny, to znaczy w kazdym przypadku realizuje swoje zadanie. W przypadku
sortowania poprawnosc algorytmu sprowadza sie do zapewnienia dwdch wiasnosci:

e cigg wynikowy musi zawieraé te same liczby co wejsciowy,
e cigg wynikowy musi by¢ uporzadkowany niemalejaco.

Aby udowodnic pierwszg wtasnosc w odniesieniu do algorytmu sortowania babelkowego
wystarczy zauwazyé, ze algorytm jedynie zamienia ze sobg w miejscu pewne pary
wartoséci w sekwencji (tablicy), natomiast nie usuwa, nie dodaje, ani nie nadpisuje
zadnej wartosci w sekwencji wartoscig, ktorej wczesniej w niej nie byto.

Udowodnienie uporzadkowania jest rowniez proste. Mozna zauwazy¢, ze kazdy przebieg
petli wewnetrznej przechodzac elementy od n-tego do (7 + 1)-ego w dét zapewnia, ze
najmniejszy element w podsekwencji od pozycji ¢« do n znajdzie sie na pozycji 1.

Gdy zatem ta petla wewnetrzna zostanie wykonana (n — 1) razy dla wartosci ¢ od 1 do
(n — 1) to na tych pozycjach w sekwencji znajdzie sie (n — 1) kolejno najmniejszych
elementow. Wtedy, konsekwentnie, element n-ty bedzie najwiekszy w sekwencji, zatem
cafa sekwencja bedzie uporzadkowana.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 4

Sortowanie przez wstawianie

Przyjrzyjmy sie z kolei innemu popularnemu algorytmowi sortowania tablicy
elementdow, zwanego sortowaniem przez wstawianie:

INSERTION-SORT(A, n)

1 fori:=2ton
2 key = Alil
3 // wstaw Ali] do posortowanej podtablicy A[l:47 — 1]
4 j=i—1
5 while ;7 > 0 and A[j] > key
6 Al +1] = Alj]
7 j=j—1
8 Alj+ 1] = key
Jak sugeruje rysunek po prawej,
@ [ST2T4[6T1]3] & [2[s[4l6[113] © [2]4]s[e]1]2] algorytm jest typowo wykorzystywany
A\ A\ A przez ludzi grajacych w gry karciane
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
o GG o CEEEEE o GEREE ;ye‘i‘vjnzrﬁi@i‘izrf ?;a;;;::fay?v;g oy

»porzadkuja” je sobie w rece.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 5

Niezmienniki petli

Aby udowodni¢ poprawnosc sortowania przez wstawianie zauwazmy, ze algorytm
sprawdza kolejne podsekwencje A|l :], i traktujac podsekwencje od pierwszego do
(2 — 1)-ego jako uporzadkowanga, przesuwa niesprawdzony jeszcze element i-ty
(zmienna key) na swoje miejsce we wczesniejszej podsekwencji.

W dowodach poprawnosci algorytmoéw przydatne bywa pojecie niezmiennika petli.
W przypadku sortowania przez wstawianie, niezmiennikiem zewnetrznej petli for jest
wtasno$¢, ze na poczatku kazdego jej wykonania cze$¢ tablicy w zakresie A[l : i — 1]
zawiera te same elementy co tablica wejSciowa, ale uporzadkowane niemalejaco.

Dowdd poprawnosci z wykorzystaniem niezmiennika wykorzystuje indukcje
matematyczng. Nalezy wykazac, ze wtasnosc niezmiennika zachodzi przed pierwszym
wykonaniem petli, a nastepnie, zaktadajac, ze niezmiennik jest spetniony przed
dowolnym kolejnym jej wykonaniem, to bedzie rowniez spetniony po tym wykonaniu.

Po przeprowadzeniu tego dowodu mamy zagwarantowane, ze wtasno$¢ niezmiennika
bedzie zachowana po ostatnim wykonaniu petli, a co za tym idzie, zachodzi dla
wynikowej struktury danych. W przypadku sortowania przez wstawianie, petla konczy
sie gdy wartos$¢ ¢ wynosi (n + 1), zatem zakres elementéw tablicy A|l : n| zawiera
oryginalne elementy, ale uporzadkowane.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

Efektywnos¢ algorytmow

Poprawnos¢ algorytmu stanowi jego by¢ moze najwazniejszg wtasnosc, ale nie jest
jedyng cecha wazng w zastosowaniach praktycznych. W oczywisty sposéb, aspekty
praktyczne, takie jak zasoby obliczeniowe niezbedne do jego wykonania, sg niemal
rownie wazne. Te zasoby to gtdwnie ilosC wykorzystywanej pamieci oraz czas zuzyty na
obliczenia, a w niektorych przypadkach takze inne zasoby takie jak intensywnosc
komunikacji (iloé¢ przesytanych danych), zuzycie energii, itp.

Wykorzystanie tych zasobdéw w trakcie wykonywania danego algorytmu stanowi o jego
efektywnosci, a badanie tej efektywnosci nazywa sie analizg algorytmu.

Aby wiarygodnie oszacowac efektywnos¢ algorytmu potrzebujemy informac;i

o parametrach i wymaganiach komputera, na ktérym algorytm bedzie wykonywany. To
jest ogolnie trudne do przewidzenia, zatem w analizie algorytmdw przyjmuje sie pewien
abstrakcyjny model komputera. W wielu przypadkach jest nim jednoprocesorowy model
komputera zwany RAM (Random-Access Machine). Model RAM zaktada, ze
wykonanie kazdej instrukcji zajmuje tyle samo czasu, ze instrukcje wykonywane s3
scisle sekwencyjnie, i ze istniejg w nim podstawowe typy danych, takie jak liczby
catkowite i zmiennoprzecinkowe. Model nie okresla doktadnie zestawu instrukgji, ale
domyslnie s3 to podstawowe instrukcje arytmetyczne, logiczne, przesyfanie danych,
skoki, i wykonywanie procedur.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 7

Ograniczenia modelu RAM

brak zatozenia o zakresie liczb integer
brak zatozenia o zakresie i precyzji liczb zmiennoprzecinkowych

brak uwzglednienia efektéw pamieci buforowej (cache) i pamieci wirtualne;

Pomimo tych i innych ograniczen uproszczonego modelu RAM komputera, analiza
algorytmow dokonywana na jego bazie zwykle dostarcza bardzo dobrych predykgji
efektywnosci uzyskiwanej na rzeczywistych komputerach.

Czesto jednak taka analiza okazuje sie catkiem skomplikowana, pomimo uproszczen
modelu RAM.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

Analiza czasu wykonania algorytmu

Gdybysmy chcieli okreslic czas wykonania algorytmu takiego jak jeden

z przedstawionych algorytmow sortowania, to moglibySmy zaimplementowac dany
algorytm w konkretnym jezyku programowania, skompilowac program na jakims
wybranym komputerze, wykorzystujac wybrany kompilator, ktéry wykorzystuje swoje
biblioteki, zawierajgce implementacje podstawowych funkcji wysokopoziomowego
jezyka programowania, oraz ostatecznie uruchomic go dla jakichs przyktadowych
danych mierzac czasy wykonania.

W oczywisty sposob mozna oczekiwac, ze te czasy beda rézne, w zaleznosci od
powyzszych czynnikéw biorgcych udziat w eksperymencie, a nawet wielokrotne
uruchamianie tego samego programu dla tych samych danych moze da¢ rézne wyniki.

Zamiast tego, mozna przeanalizowac¢ sam zapis algorytmu w pseudokodzie, liczac
wykonanie kazdej instrukcji, ewentualnie uwzgledniajac przyjete w modelu czasy
wykonania réznych instrukcji pseudokodu.

Jednak nawet przy takich zatozeniach nie mozemy wyznaczy¢ konkretnego czasu
wykonania algorytmu, takiego jak algorytm sortowania przez wstawianie, albowiem ten
czas bedzie zalezat on od konkretnych danych.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 9

Obliczenie czasu wykonania sortowania przez wstawianie

Przede wszystkim, czas wykonania algorytmu takiego jak sortowanie przez wstawianie
bedzie niemal na pewno zalezat od dtugosci sortowanej sekwencji. Latwo sobie
wyobrazié, ze algorytm wykona mniej operacji, a wiec skonczy prace szybciej, dla
sekwencji pieciu liczb, niz, na przyktad, dla sekwencji pieciu tysiecy.

Mozna oczekiwaé, ze czas wykonania algorytmu bedzie pewng funkcjg dtugosci
sortowanej sekwencji. Zamiast wiec obliczac ten konkretny czas, naszym celem bedzie
wyznaczenie ksztattu tej funkcji. Zaktadajac, ze sekwencja wejsciowa ma dtugosé n,
bedzie to funkcja zmiennej n.

Ale pojawia sie dodatkowa komplikacja. Algorytm INSERTION-SORT wykonuje swoj3
petle wewnetrzng while — ktéra przesuwa nowo wstawiang liczbe w lewo, na
wczesniejsze pozycje — tylko tak daleko jak to jest potrzebne. Ta liczba wykonan petli
while bedzie zmienna, i zalezna nie tylko od dtugosci sekwencji danych, ale réwniez od
konkretnych liczb w sekwencji.

W przypadku sortowania przez wstawianie mozemy okresli¢ przypadki skrajne.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 10

Sortowanie przez wstawianie — przypadek najlepszy

Najlepszym mozliwym przypadkiem jest, gdy sekwencja wejSciowa jest od razu
poprawnie posortowana. W takim przypadku petla wewnetrzna while nigdy nie bedzie
wykonywana, a doktadniej bedzie tylko jednorazowo sprawdzany jej warunek
zakonczenia. Zatem bedzie jedynie wykonywana petla zewnetrzna for, i wykona ona

trzy instrukcje przypisania:
T(n)=3-n"cCuss+ 1 Comp+ (M —1) - Cpop

gdzie c,s; 0znacza czas wykonania instrukcji przypisania wartosci zmiennej, dla
uproszczenia ujednolicony dla maszyny RAM, ¢, jest czasem sprawdzenia warunku
petli while, a cy,, jest czasem wznowienia kazdej iteracji petli for.

Poniewaz nie znamy doktadnych wartosci czasow wykonania poszczegdlnych
jednostkowych operacji modelu RAM, mozemy ten wzor przedstawi¢ w nastepujacej

postaci:
T(n) = (3 Ccass + Comp + Cfor) * M — Cfor R C1- M

Koncowa aproksymacja przyjmuje ¢; = (3 - Cuss + Comp + Cfor) | pomija jednostkowy
czas Cy,r, ktory przy wielokrotnym wykonaniu petli sortowania bedzie na ogdt
pomijalny. Zatem czas sortowania jest liniowo zalezny od liczby elementow sekwenc;ji.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

Sortowanie przez wstawianie — przypadek najgorszy

Najgorszym mozliwym przypadkiem dla sortowania przez wstawianie jest, gdy
sekwencja wejsciowa jest poczatkowo posortowana malejgco, czyli w kolejnosci
odwrotnej do docelowej. W takim przypadku petla wewnetrzna while bedzie zawsze
wykonywana w maksymalnym zakresie instrukcji. Petla zewnetrzna bedzie wykonywana
doktadnie tak samo jak w przypadku najlepszym.

Czas wykonywania petli wewnetrznej while jest w tym przypadku zmienny, rosnac od
pojedynczej operacji do przejscia catej sekwencji (n — 1) liczb na koncu. Oznaczajac
jako cynile €zas wykonania catej zawartosci petli while, to znaczy dwodch instrukgc;i
przypisania, sprawdzenia warunku, i obliczania indeksow tablicy, catkowity czas
wszystkich wykonan tej petli bedzie wynosit

Tonae = (35 = 1)) - cunae = (=2

2
— 1) cypile =C1-N"+ 2N+ c3

czyli bedzie kwadratowa funkcja (wielomianem) parametru n z pewnymi statymi.

Poniewaz w zewnetrznej petli for dodatkowo wykonywane s (n — 1) razy trzy
operacje przypisania, zatem caty czas wykonania algorytmu réwniez jest funkcja
kwadratowa dtugoéci wejécia, z troche innymi statymi]

INjeco doktadniejsze obliczenie czasu dziatania tego algorytmu mozna znalez¢ w podreczniku cytowanym na koncu tej
prezentacji.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 12

Znaczenie czasu wykonania algorytmu w roznych przypadkach

ObliczyliSmy czas wykonywania algorytmu sortowania przez wstawianie w dwoch
skrajnych przypadkach, i otrzymalismy istotnie rézne wyniki.

Ale co mozna powiedzie¢ o pozostatych przypadkach? Czy te skrajne wyniki maja
w ogdle jakie$ znaczenie?

Jesli wzig¢ pod uwage rozne mozliwe zastosowania procedury sortowania w praktyce,
to najgorszy mozliwy przypadek ma bardzo istotne znaczenie techniczne w systemach
typu sterowania, zwtaszcza w systemach czasu rzeczywistego, takich jak sterowanie
silnikami, procesami przemystowymi, elektrowniami atomowymi, itp. W takich
systemach wazne jest nie tylko, ze zaimplementowany i wdrozony system
informatyczny dziata poprawnie w czasie testow, ale réwniez wazne jest zapewnienie,
ze bedzie on nadal dziatat poprawnie nawet przy najgorszym mozliwym splocie
okolicznosci, ktéry moze byé mato prawdopodobny, ale gdy sie zdarzy, moze
maksymalnie utrudni¢ (czytaj: wydtuzy¢) czas zadziatania systemu sterowania.

Zatem analiza zachowania algorytmu w przypadku najgorszym ma sens i bardzo czesto
jest to podstawowa wfasciwos¢ algorytmow badana i podawana w ich opisach.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 13

Przypadek najlepszy ma duzo mniejsze znaczenie w praktyce. Pomysimy jaki bytby
efekt, gdyby jaki$ autor programu, lub firma, reklamowata nowy, innowacyjny program,
ktory ,w najlepszym, skrajnie korzystnym przypadku, dziata w czasie pojedynczych
milisekund” (na przyktad). Czy to bytaby dobra reklama takiego produktu?

A co w przypadku chocby minimalnie gorszym od tego optymistycznego?

Jednak s3 sytuacje, w ktérych minimalny czas dziatania programu w najbardzie;
optymistycznym przypadku moze mieC znaczenie, aczkolwiek te sytuacje s3 znacznie
rzadsze. Wyobrazmy sobie nowoczesny algorytm szyfrowania, ktérego procedura
ztamania jest znana, ale jest tak skomplikowana obliczeniowo, ze nawet w najlepszym
przypadku musi zaja¢ bardzo duzo obliczen (np. kilka lat czasu procesora). Wtedy ten
wynik jest bardzo waznym parametrem algorytmu szyfrowania, i jego znajomosc bytaby
cenna dla jego autora/éw. Jest to jednak sytuacja szczegdlna, bo gwarantowana zta
efektywno$¢ czasowa algorytmu tamania szyfru stanowi zalete algorytmu szyfrowania.

A co w pozostatych sytuacjach? Dla wielu zastosowan praktycznych znaczenie ma czas
wykonania algorytmu w przypadku srednim, czyli czas pracy usredniony dla réznych
danych, np. generowanych losowo. Taki czas mozna traktowac jako wartosc¢
oczekiwang czasu dziatania algorytmu, i ta wartos¢ ma znaczenie np. w systemach
typu serwisowego. Na przyktad, gdyby jakas firma oferowata obstuge serwisowa
pewnych zdarzen, i miata podpisaC umowe na swiadczenie tych ustug z klientem, to dla
tego klienta mogtby nie mie¢ znaczenia zaden pojedynczy czas zadziatania serwisu,

a jedynie ich czas sumaryczny, zwigzany ze Srednim czasem pojedynczego zadziatania.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 14

Rzad wzrostu funkcji

Okreslajac czas dziatania algorytmu sortowania przez wstawianie zignorowalismy
roznice miedzy czasami pojedynczych operacji, zastepujac ich sume jakas symboliczng
statg. Czas wykonywania algorytmu w przypadku najgorszym mozna wtedy wyrazic
wzorem: an’? + bn + c. W ten sposéb nie tylko nie bedziemy w stanie obliczy¢
ostatecznego czasu dziatania w jakichkolwiek jednostkach czasu, ale rowniez gubimy
réznice pomiedzy (statymi) czasami wykonywania réznych instrukcji, i otrzymany wzér
bedzie tylko zgrubnym przyblizeniem rzeczywistej wartosci.

Zrobimy kolejny krok upraszczajacy, i we wzorze na czas wykonywania algorytmu
pominiemy wszystkie skfadniki poza elementem o najwyzszym rzedzie wielkosci, czyli
an?®. Oraz ostatecznie pominiemy réwniez staty mnoznik, pozostawiajac jedynie wyraz
n?. Ten gtéwny wyraz ze wzoru na czas dziatania algorytmu, nazywamy jego rzedem
wielkosci lub rzedem wzrostu i oznaczamy symbolem greckim ©. Méwimy, ze
algorytm ma czas pracy najgorszego przypadku ©(n?) (czytaj: duze © od n kwadrat).

Powodem takiego uproszczenia jest fakt, ze dla dtugich sekwencji danych, dla ktérych
czas dziatania algorytmu ma najwieksze znaczenie, ten gtéwny czynnik najlepiej okresla
czas dziatania algorytmu.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 15

Na przykfad, rozwazmy czas sortowania sekwencji miliona liczb algorytmem
INSERT-SORT w dwdch przypadkach: najlepszym (sekwencja juz poprawnie
uporzadkowana), i najgorszym (sekwencja uporzadkowana odwrotnie). W pierwszym
przypadku rzad wielkoéci ©(n) daje wartoéé miliona 10°, a w drugim ©(n?) daje
wartoéé 10'2.

Dla potrzeb konkretnego obliczenia przyjmijmy bardzo zgrubne przyblizenie czasu
wykonania pojedynczej instrukcji pseudokodu jako dziesieciu mikrosekund

10-107%s = 107°s, i catkowite czasy w obu przypadkach przemnézmy jeszcze przez 10
aby odzyska¢ zgubione mnozniki state. Dla pierwszego (najlepszego) przypadku
uzyskujemy czas dziatania 10 - 10° - 107°s = 100s. Natomiast dla drugiego
(najgorszego) przypadku dostajemy 10 - 102 - 107°s = 10%s ~ 27778¢g ~ 1157d =~ 3I.
Roznica wynikajaca z roznych rzedow wielkosci tych funkcji jest tak duza, ze gdybysmy
chcieli dokfadniej uwzglednic réznice wartosci czaséw wykonywania poszczegdlnych
operacji, to nawet gdyby wnosity one mnozniki typu 10x,20x, 50X, to nie zniweluja
one dramatycznej réznicy czaséw wykonania algorytmu w tych dwéch przypadkach.

Ten przyktad ilustruje, dlaczego ma sens wyrazanie i porownywanie czasu pracy
algorytmow jako rzedu wielkosci ©, z pominieciem czynnikow statych i wyrazow
nizszego rzedu. S3 jednak przypadki, kiedy te elementy maja znaczenie, a mianowicie
praca na mniejszych zbiorach danych. Gdy rozwazamy taki ograniczony zbior danych,
to algorytm o nizszym rzedzie © moze mieC wyzszy rzeczywisty czas pracy.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 16

Uzupetnienie: czas pracy sortowania przez wstawianie
w przypadku Srednim

Fakt: W przypadku Srednim sortowanie przez wstawianie ma czas wykonania bedacy
kwadratem wielkoéci zbioru, czyli ©(n?), a wiec doktadnie takim jak w przypadku
najgorszym.

Jakkolwiek w petni formalny i rygorystyczny dowdd tego faktu mozna znalez¢

w literaturze, to na dosc nieprecyzyjnym poziomie mozemy zauwazyc, ze w przypadku
srednim algorytm wykona w kazdym przebiegu petli zewnetrznej cze$é, nie catos¢, petli
wewnetrznej, bo takiego rozrzutu wartosci mozemy oczekiwaé w takim przypadku.
Jednak ta czes¢ bedzie zawsze utamkiem catkowitej liczby elementéw, a nie jakas
niewielka, statg liczbg krokow.

A zatem otrzymujemy wzér na liczbe krokow w postaci: n - ’;n i po wyeliminowaniu

statych otrzymamy zawsze wyrazenie n°.

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 17

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

18

EfektywnoS¢ asymptotyczna i notacja asymptotyczna

StwierdziliSmy, ze ma sens poréwnywanie algorytmow ze wzgledu na gtéwny czynnik
wyrazenia okreslajacego czas pracy algorytmu, co wiarygodnie okresla czas dziatania
algorytmu jedynie dla dostatecznie duzych zbiorow danych. W ten sposob bierzemy
pod uwage asymptotyczng efektywnosSc¢ algorytmu, czyli jego zachowanie gdy
rozmiar zbioru danych dazy do nieskonczonosci. ©-wyrazenia stuza do zapisu te;
asymptotycznej efektywnosci i ten zapis nazywamy notacjg asymptotyczng.

Istnieja jeszcze inne rodzaje notacji asymptotycznej przydatnych w analizie algorytméw.
Notacja duze-O wyraza ograniczenie gérne asymptotycznego wzrostu funkcji. Za
pomoca notacji duze-O mozemy okresli¢ funkcje, ktére rosng asymptotycznie co
najmniej tak samo szybko jak dana funkcja. A zatem dla algorytmu, ktérego rzad
wzrostu czasu dziatania wynosi n° mozemy stwierdzié, ze jego asymptotyczna
efektywno$é wynosi O(n?), ale jednoczeénie wynosi ona O(n?), O(n®), O(n'?), itd.

Analogicznie, notacja duze-{) okresla ograniczenie dolne asymptotycznego wzrostu
funkcji. A wiec dla algorytmu, ktérego rzad wzrostu czasu dziatania wynosi n? jego
asymptotyczna efektywnoéé wynosi Q(n?), ale jednoczeénie wynosi Q(n), Q(logn), itp.

W odréznieniu od tych dwdch ograniczen (O i (2), wprowadzona wcze$niej notacja
duze-© wyraza doktadna funkcje wzrostu danej wartoéci. Funkcja n? jest tylko ©(n?).

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 19

Precyzyjne definicje notacji asymptotycznych
cg(n) c28(n)
f(n)

o fn)
\v///////// cg(n) ()

avl

" fn) = 0(g(n)) "0) = Q(gn)) " fm) = 0(g(n))
O(g(n)) = {f(n): 30 ng>0 Ynzn, 0 < f(n) < cg(n)}

Qg(n)) = {f(n): Fe=0 ne=0 Vazne 0 < cg(n) < f(n)}

@(g(n)) = {f<n> : EIC1>0 c2>0 np>0 Vnzno 0 < Clg(”) < f(n> < C29<n>}

Wyrazenie duze-O nazywamy asymptotycznym ograniczeniem gdérnym.
Wyrazenie duze-{) nazywamy asymptotycznym ograniczeniem dolnym.
Wyrazenie duze-O nazywamy asymptotycznym ograniczeniem ciasnym.

Uwaga: pomimo iz formalnie definiujemy notacje asymptotyczne jako zbiory, potem
utozsamiamy je z pojedynczymi funkcjami, np. 2n* + 3n + 5 = O(n?).

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna 20

WHtasnosci notacji asymptotycznych

Przechodnios¢:

f(n) =0O(g(n)) A g(n) = O(h(n)) = f(n) = O(h(n))
f(n) = O(g(n)) A g(n) = O(h(n)) = f(n) = O(h(n))
f(n) = Q(g(n)) A g(n) = Qh(n)) = f(n) = Q(h(n))
Zwrotnos¢:
f(n) =0(f(n))
f(n) = O(f(n))
f(n) =Q(f(n))
Symetria
f(n) =06(g(n)) < g(n) = O(f(n))
f(n) = 0(g(n)) < g(n) = Q(f(n))

Zachodzi rowniez nastepujace twierdzenie:

Dla dowolnych funkcji f(n) i g(n):

f(n)=0(g(n)) & f(n)=0(g(n)) A f(n) =Q(g(n))

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

21

Wstep: algorytmy, poprawnosc¢ i efektywnos¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna

22

Krotkie podsumowanie — pytania sprawdzajgce

. Rozwaz algorytm liniowego przeszukiwania tablicy w zakresie A[1 : n|. Napisz
pseudokod procedury implementujacej ten algorytm. Argumentami beda: tablica A,
rozmiar n, i poszukiwana liczba x. Procedura zwroci indeks znalezionego elementu,
lub wartos¢ —1 gdy go nie ma.

. Sformutuj niezmiennik petli algorytmu z poprzedniego pytania, i z jego
wykorzystaniem udowodnij poprawnos¢ algorytmu.

. Sformutuj niezmiennik petli wewnetrznej dla algorytmu BUBBLE-SORT,
i udowodnij jego zachowanie w algorytmie.

. Nastepnie wykorzystujac warunek zakonczenia niezmiennika z poprzedniego pytania,
sformutuj niezmiennik petli zewnetrznej algorytmu BUBBLE-SORT, i z jego
wykorzystaniem udowodnij poprawnos¢ catego algorytmu.

. Rozwaz algorytm przeszukiwania liniowego tablicy z pytania numer [1]. lle elementéw
tablicy procedura przeszuka w najgorszym przypadku? A ile w przypadku s$rednim,
zaktadajac losowe rozmieszczenie elementow, i zakfadajac, ze element znajduje sie
w tablicy? Zapisz ©-wyrazenia czasu dziatania algorytmu w obu przypadkach.

Wstep: algorytmy, poprawnosc¢ i efektywno$¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna — podsumowanie 23

Literatura i materiaty pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Woprowadzenie do algorytmow, PWN, 2024, rozdziaty: 1, 2.1, 2.2, i 3.

Wstep: algorytmy, poprawno$c¢ i efektywno$¢ obliczen, rzad wzrostu funkgji, notacja asymptotyczna — literatura

24

