
Algorytmy
Algorytm jest przepisem na wykonanie jakichś obliczeń. Celem tych obliczeń jest
uzyskanie jakiegoś wyniku, oraz zwykle algorytm operuje na jakichś danych, które
muszą być dostępne aby możliwe było wykonanie algorytmu i otrzymanie tego wyniku.

Przykłady algorytmów stosowanych w różnych dziedzinach:

algorytmy arytmetyczne — stosowane w komputerach do obliczania popularnych
funkcji matematycznych, takich jak: pierwiastki, logarytmy, funkcje
trygonometryczne, itp.

algorytmy grafowe — zastosowania w znajdowaniu ścieżek dla: nawigacji,
znajdowania tras w sieciach komputerowych, projektowaniu układów VLSI, grach
komputerowych, itp.

algorytmy tekstowe — wyszukiwanie haseł, indeksowanie, kompresja, itp.

algorytmy analizy matematycznej — przetwarzanie sygnałów, filtracja,
transformacja obrazów

algorytmy uczenia maszynowego — przetwarzanie wielkich zbiorów danych
w celu automatycznej budowy systemów sztucznej inteligencji, ale również analizy
danych, itp.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 1



Pseudokod
Zawarty w algorytmie przepis musi być podany w sposób jasny, precyzyjny,
i jednoznaczny. W literaturze związanej z informatyką algorytmy zwyczajowo zapisuje
się w tzw. pseudokodzie, czyli w pewnym abstrakcyjnym języku, podobnym do
popularnych języków programowania.

Na przykład, pseudokod algorytmu sumowania elementów tablicy:

Sum-Array(A, n)
1 sum = 0
2 for i = 1 to n
3 sum = sum + A[i]
4 return sum

Zwróćmy uwagę:
• bloki instrukcji uwidocznione wcięciami
• instrukcje nie muszą (ale mogą) być zakończone średnikiem
• zakładamy numerowanie elementów tablicy od 1 do N (ale gdy wygodne, możemy

również użyć numeracji od 0 do N-1, odnotowując to za pomocą komentarzy)
• w pseudokodzie mogą pojawiać się obiektowe atrybuty w stylu A.length
• zwykłe, skalarne, parametry procedur są przekazywane przez wartość, ale tablice

i obiekty jako parametry procedur przekazywane są przez wskaźnik

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 2



Zagadnienie sortowania

Jednym z ważnych zagadnień, dla których istnieje szereg ważnych algorytmów jest
zagadnienie sortowania. Problem polega, dla danej na wejściu sekwencji liczb, na
wygenerowaniu na wyjściu algorytmu innej sekwencji, będącej niemalejącą permutacją
sekwencji wejściowej. Permutacja jest sekwencją tych samych liczb, ale być może w
innym porządku.

Konieczność sortowania zachodzi w wielu zastosowaniach praktycznych, i polega
zwykle na uporządkowaniu zbioru bardziej złożonych obiektów, z których każdy
charakteryzuje pewna wielkość, zwana kluczem sortowania, według którego ciąg
powinien być uporządkowany.

Popularny, jeden z najprostszych algorytmów sortowania:
Bubble-Sort(A, n)
1 for i = 1 to n − 1
2 for j = n downto i + 1
3 if A[j] < A[j − 1]
4 // zamień wartości A[j] i A[j − 1]
5 tmp = A[j − 1]
6 A[j − 1] = A[j]
7 A[j] = tmp

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 3



Poprawność algorytmu sortowania

Dla każdego algorytmu ważne jest w pełni rygorystyczne wykazanie, że algorytm jest
poprawny, to znaczy w każdym przypadku realizuje swoje zadanie. W przypadku
sortowania poprawność algorytmu sprowadza się do zapewnienia dwóch własności:

• ciąg wynikowy musi zawierać te same liczby co wejściowy,
• ciąg wynikowy musi być uporządkowany niemalejąco.

Aby udowodnić pierwszą własność w odniesieniu do algorytmu sortowania bąbelkowego
wystarczy zauważyć, że algorytm jedynie zamienia ze sobą w miejscu pewne pary
wartości w sekwencji (tablicy), natomiast nie usuwa, nie dodaje, ani nie nadpisuje
żadnej wartości w sekwencji wartością, której wcześniej w niej nie było.

Udowodnienie uporządkowania jest również proste. Można zauważyć, że każdy przebieg
pętli wewnętrznej przechodząc elementy od n-tego do (i + 1)-ego w dół zapewnia, że
najmniejszy element w podsekwencji od pozycji i do n znajdzie się na pozycji i.
Gdy zatem ta pętla wewnętrzna zostanie wykonana (n − 1) razy dla wartości i od 1 do
(n − 1) to na tych pozycjach w sekwencji znajdzie się (n − 1) kolejno najmniejszych
elementów. Wtedy, konsekwentnie, element n-ty będzie największy w sekwencji, zatem
cała sekwencja będzie uporządkowana.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 4



Sortowanie przez wstawianie

Przyjrzyjmy się z kolei innemu popularnemu algorytmowi sortowania tablicy
elementów, zwanego sortowaniem przez wstawianie:

Insertion-Sort(A, n)
1 for i = 2 to n
2 key = A[i]
3 // wstaw A[i] do posortowanej podtablicy A[1 : i − 1]
4 j = i − 1
5 while j > 0 and A[j] > key
6 A[j + 1] = A[j]
7 j = j − 1
8 A[j + 1] = key

Jak sugeruje rysunek po prawej,
algorytm jest typowo wykorzystywany
przez ludzi grających w gry karciane
typu brydża, gdzie gracze otrzymują
pewną liczbę kart, i zwykle dla wygody
„porządkują” je sobie w ręce.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 5



Niezmienniki pętli
Aby udowodnić poprawność sortowania przez wstawianie zauważmy, że algorytm
sprawdza kolejne podsekwencje A[1 : i], i traktując podsekwencję od pierwszego do
(i − 1)-ego jako uporządkowaną, przesuwa niesprawdzony jeszcze element i-ty
(zmienna key) na swoje miejsce we wcześniejszej podsekwencji.

W dowodach poprawności algorytmów przydatne bywa pojęcie niezmiennika pętli.
W przypadku sortowania przez wstawianie, niezmiennikiem zewnętrznej pętli for jest
własność, że na początku każdego jej wykonania część tablicy w zakresie A[1 : i − 1]
zawiera te same elementy co tablica wejściowa, ale uporządkowane niemalejąco.

Dowód poprawności z wykorzystaniem niezmiennika wykorzystuje indukcję
matematyczną. Należy wykazać, że własność niezmiennika zachodzi przed pierwszym
wykonaniem pętli, a następnie, zakładając, że niezmiennik jest spełniony przed
dowolnym kolejnym jej wykonaniem, to będzie również spełniony po tym wykonaniu.

Po przeprowadzeniu tego dowodu mamy zagwarantowane, że własność niezmiennika
będzie zachowana po ostatnim wykonaniu pętli, a co za tym idzie, zachodzi dla
wynikowej struktury danych. W przypadku sortowania przez wstawianie, pętla kończy
się gdy wartość i wynosi (n + 1), zatem zakres elementów tablicy A[1 : n] zawiera
oryginalne elementy, ale uporządkowane.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 6



Efektywność algorytmów
Poprawność algorytmu stanowi jego być może najważniejszą własność, ale nie jest
jedyną cechą ważną w zastosowaniach praktycznych. W oczywisty sposób, aspekty
praktyczne, takie jak zasoby obliczeniowe niezbędne do jego wykonania, są niemal
równie ważne. Te zasoby to głównie ilość wykorzystywanej pamięci oraz czas zużyty na
obliczenia, a w niektórych przypadkach także inne zasoby takie jak intensywność
komunikacji (ilość przesyłanych danych), zużycie energii, itp.

Wykorzystanie tych zasobów w trakcie wykonywania danego algorytmu stanowi o jego
efektywności, a badanie tej efektywności nazywa się analizą algorytmu.

Aby wiarygodnie oszacować efektywność algorytmu potrzebujemy informacji
o parametrach i wymaganiach komputera, na którym algorytm będzie wykonywany. To
jest ogólnie trudne do przewidzenia, zatem w analizie algorytmów przyjmuje się pewien
abstrakcyjny model komputera. W wielu przypadkach jest nim jednoprocesorowy model
komputera zwany RAM (Random-Access Machine). Model RAM zakłada, że
wykonanie każdej instrukcji zajmuje tyle samo czasu, że instrukcje wykonywane są
ściśle sekwencyjnie, i że istnieją w nim podstawowe typy danych, takie jak liczby
całkowite i zmiennoprzecinkowe. Model nie określa dokładnie zestawu instrukcji, ale
domyślnie są to podstawowe instrukcje arytmetyczne, logiczne, przesyłanie danych,
skoki, i wykonywanie procedur.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 7



Ograniczenia modelu RAM

brak założenia o zakresie liczb integer
brak założenia o zakresie i precyzji liczb zmiennoprzecinkowych
brak uwzględnienia efektów pamięci buforowej (cache) i pamięci wirtualnej

Pomimo tych i innych ograniczeń uproszczonego modelu RAM komputera, analiza
algorytmów dokonywana na jego bazie zwykle dostarcza bardzo dobrych predykcji
efektywności uzyskiwanej na rzeczywistych komputerach.

Często jednak taka analiza okazuje się całkiem skomplikowana, pomimo uproszczeń
modelu RAM.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 8



Analiza czasu wykonania algorytmu

Gdybyśmy chcieli określić czas wykonania algorytmu takiego jak jeden
z przedstawionych algorytmów sortowania, to moglibyśmy zaimplementować dany
algorytm w konkretnym języku programowania, skompilować program na jakimś
wybranym komputerze, wykorzystując wybrany kompilator, który wykorzystuje swoje
biblioteki, zawierające implementacje podstawowych funkcji wysokopoziomowego
języka programowania, oraz ostatecznie uruchomić go dla jakichś przykładowych
danych mierząc czasy wykonania.

W oczywisty sposób można oczekiwać, że te czasy będą różne, w zależności od
powyższych czynników biorących udział w eksperymencie, a nawet wielokrotne
uruchamianie tego samego programu dla tych samych danych może dać różne wyniki.

Zamiast tego, można przeanalizować sam zapis algorytmu w pseudokodzie, licząc
wykonanie każdej instrukcji, ewentualnie uwzględniając przyjęte w modelu czasy
wykonania różnych instrukcji pseudokodu.

Jednak nawet przy takich założeniach nie możemy wyznaczyć konkretnego czasu
wykonania algorytmu, takiego jak algorytm sortowania przez wstawianie, albowiem ten
czas będzie zależał on od konkretnych danych.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 9



Obliczenie czasu wykonania sortowania przez wstawianie

Przede wszystkim, czas wykonania algorytmu takiego jak sortowanie przez wstawianie
będzie niemal na pewno zależał od długości sortowanej sekwencji. Łatwo sobie
wyobrazić, że algorytm wykona mniej operacji, a więc skończy pracę szybciej, dla
sekwencji pięciu liczb, niż, na przykład, dla sekwencji pięciu tysięcy.

Można oczekiwać, że czas wykonania algorytmu będzie pewną funkcją długości
sortowanej sekwencji. Zamiast więc obliczać ten konkretny czas, naszym celem będzie
wyznaczenie kształtu tej funkcji. Zakładając, że sekwencja wejściowa ma długość n,
będzie to funkcja zmiennej n.

Ale pojawia się dodatkowa komplikacja. Algorytm Insertion-Sort wykonuje swoją
pętlę wewnętrzną while — która przesuwa nowo wstawianą liczbę w lewo, na
wcześniejsze pozycje — tylko tak daleko jak to jest potrzebne. Ta liczba wykonań pętli
while będzie zmienna, i zależna nie tylko od długości sekwencji danych, ale również od
konkretnych liczb w sekwencji.

W przypadku sortowania przez wstawianie możemy określić przypadki skrajne.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 10



Sortowanie przez wstawianie — przypadek najlepszy

Najlepszym możliwym przypadkiem jest, gdy sekwencja wejściowa jest od razu
poprawnie posortowana. W takim przypadku pętla wewnętrzna while nigdy nie będzie
wykonywana, a dokładniej będzie tylko jednorazowo sprawdzany jej warunek
zakończenia. Zatem będzie jedynie wykonywana pętla zewnętrzna for, i wykona ona
trzy instrukcje przypisania:

T (n) = 3 · n · cass + n · ccmp + (n − 1) · cfor

gdzie cass oznacza czas wykonania instrukcji przypisania wartości zmiennej, dla
uproszczenia ujednolicony dla maszyny RAM, ccmp jest czasem sprawdzenia warunku
pętli while, a cfor jest czasem wznowienia każdej iteracji pętli for.

Ponieważ nie znamy dokładnych wartości czasów wykonania poszczególnych
jednostkowych operacji modelu RAM, możemy ten wzór przedstawić w następującej
postaci:

T (n) = (3 · cass + ccmp + cfor) · n − cfor ≈ c1 · n

Końcowa aproksymacja przyjmuje c1 = (3 · cass + ccmp + cfor) i pomija jednostkowy
czas cfor, który przy wielokrotnym wykonaniu pętli sortowania będzie na ogół
pomijalny. Zatem czas sortowania jest liniowo zależny od liczby elementów sekwencji.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 11



Sortowanie przez wstawianie — przypadek najgorszy
Najgorszym możliwym przypadkiem dla sortowania przez wstawianie jest, gdy
sekwencja wejściowa jest początkowo posortowana malejąco, czyli w kolejności
odwrotnej do docelowej. W takim przypadku pętla wewnętrzna while będzie zawsze
wykonywana w maksymalnym zakresie instrukcji. Pętla zewnętrzna będzie wykonywana
dokładnie tak samo jak w przypadku najlepszym.

Czas wykonywania pętli wewnętrznej while jest w tym przypadku zmienny, rosnąc od
pojedynczej operacji do przejścia całej sekwencji (n − 1) liczb na końcu. Oznaczając
jako cwhile czas wykonania całej zawartości pętli while, to znaczy dwóch instrukcji
przypisania, sprawdzenia warunku, i obliczania indeksów tablicy, całkowity czas
wszystkich wykonań tej pętli będzie wynosił

Twhile = (
n∑

i=2
(i − 1)) · cwhile = ((n − 2)(n − 1)

2
− 1) · cwhile = c1 · n2 + c2 · n + c3

czyli będzie kwadratową funkcją (wielomianem) parametru n z pewnymi stałymi.

Ponieważ w zewnętrznej pętli for dodatkowo wykonywane są (n − 1) razy trzy
operacje przypisania, zatem cały czas wykonania algorytmu również jest funkcją
kwadratową długości wejścia, z trochę innymi stałymi.1

1Nieco dokładniejsze obliczenie czasu działania tego algorytmu można znaleźć w podręczniku cytowanym na końcu tej
prezentacji.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 12



Znaczenie czasu wykonania algorytmu w różnych przypadkach

Obliczyliśmy czas wykonywania algorytmu sortowania przez wstawianie w dwóch
skrajnych przypadkach, i otrzymaliśmy istotnie różne wyniki.

Ale co można powiedzieć o pozostałych przypadkach? Czy te skrajne wyniki mają
w ogóle jakieś znaczenie?

Jeśli wziąć pod uwagę różne możliwe zastosowania procedury sortowania w praktyce,
to najgorszy możliwy przypadek ma bardzo istotne znaczenie techniczne w systemach
typu sterowania, zwłaszcza w systemach czasu rzeczywistego, takich jak sterowanie
silnikami, procesami przemysłowymi, elektrowniami atomowymi, itp. W takich
systemach ważne jest nie tylko, że zaimplementowany i wdrożony system
informatyczny działa poprawnie w czasie testów, ale również ważne jest zapewnienie,
że będzie on nadal działał poprawnie nawet przy najgorszym możliwym splocie
okoliczności, który może być mało prawdopodobny, ale gdy się zdarzy, może
maksymalnie utrudnić (czytaj: wydłużyć) czas zadziałania systemu sterowania.

Zatem analiza zachowania algorytmu w przypadku najgorszym ma sens i bardzo często
jest to podstawowa właściwość algorytmów badana i podawana w ich opisach.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 13



Przypadek najlepszy ma dużo mniejsze znaczenie w praktyce. Pomyślmy jaki byłby
efekt, gdyby jakiś autor programu, lub firma, reklamowała nowy, innowacyjny program,
który „w najlepszym, skrajnie korzystnym przypadku, działa w czasie pojedynczych
milisekund” (na przykład). Czy to byłaby dobra reklama takiego produktu?
A co w przypadku choćby minimalnie gorszym od tego optymistycznego?

Jednak są sytuacje, w których minimalny czas działania programu w najbardziej
optymistycznym przypadku może mieć znaczenie, aczkolwiek te sytuacje są znacznie
rzadsze. Wyobraźmy sobie nowoczesny algorytm szyfrowania, którego procedura
złamania jest znana, ale jest tak skomplikowana obliczeniowo, że nawet w najlepszym
przypadku musi zająć bardzo dużo obliczeń (np. kilka lat czasu procesora). Wtedy ten
wynik jest bardzo ważnym parametrem algorytmu szyfrowania, i jego znajomość byłaby
cenna dla jego autora/ów. Jest to jednak sytuacja szczególna, bo gwarantowana zła
efektywność czasowa algorytmu łamania szyfru stanowi zaletę algorytmu szyfrowania.

A co w pozostałych sytuacjach? Dla wielu zastosowań praktycznych znaczenie ma czas
wykonania algorytmu w przypadku średnim, czyli czas pracy uśredniony dla różnych
danych, np. generowanych losowo. Taki czas można traktować jako wartość
oczekiwaną czasu działania algorytmu, i ta wartość ma znaczenie np. w systemach
typu serwisowego. Na przykład, gdyby jakaś firma oferowała obsługę serwisową
pewnych zdarzeń, i miała podpisać umowę na świadczenie tych usług z klientem, to dla
tego klienta mógłby nie mieć znaczenia żaden pojedynczy czas zadziałania serwisu,
a jedynie ich czas sumaryczny, związany ze średnim czasem pojedynczego zadziałania.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 14



Rząd wzrostu funkcji

Określając czas działania algorytmu sortowania przez wstawianie zignorowaliśmy
różnice między czasami pojedynczych operacji, zastępując ich sumę jakąś symboliczną
stałą. Czas wykonywania algorytmu w przypadku najgorszym można wtedy wyrazić
wzorem: an2 + bn + c. W ten sposób nie tylko nie będziemy w stanie obliczyć
ostatecznego czasu działania w jakichkolwiek jednostkach czasu, ale również gubimy
różnice pomiędzy (stałymi) czasami wykonywania różnych instrukcji, i otrzymany wzór
będzie tylko zgrubnym przybliżeniem rzeczywistej wartości.

Zrobimy kolejny krok upraszczający, i we wzorze na czas wykonywania algorytmu
pominiemy wszystkie składniki poza elementem o najwyższym rzędzie wielkości, czyli
an2. Oraz ostatecznie pominiemy również stały mnożnik, pozostawiając jedynie wyraz
n2. Ten główny wyraz ze wzoru na czas działania algorytmu, nazywamy jego rzędem
wielkości lub rzędem wzrostu i oznaczamy symbolem greckim Θ. Mówimy, że
algorytm ma czas pracy najgorszego przypadku Θ(n2) (czytaj: duże Θ od n kwadrat).

Powodem takiego uproszczenia jest fakt, że dla długich sekwencji danych, dla których
czas działania algorytmu ma największe znaczenie, ten główny czynnik najlepiej określa
czas działania algorytmu.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 15



Na przykład, rozważmy czas sortowania sekwencji miliona liczb algorytmem
Insert-Sort w dwóch przypadkach: najlepszym (sekwencja już poprawnie
uporządkowana), i najgorszym (sekwencja uporządkowana odwrotnie). W pierwszym
przypadku rząd wielkości Θ(n) daje wartość miliona 106, a w drugim Θ(n2) daje
wartość 1012.

Dla potrzeb konkretnego obliczenia przyjmijmy bardzo zgrubne przybliżenie czasu
wykonania pojedynczej instrukcji pseudokodu jako dziesięciu mikrosekund
10 · 10−6s = 10−5s, i całkowite czasy w obu przypadkach przemnóżmy jeszcze przez 10
aby odzyskać zgubione mnożniki stałe. Dla pierwszego (najlepszego) przypadku
uzyskujemy czas działania 10 · 106 · 10−5s = 100s. Natomiast dla drugiego
(najgorszego) przypadku dostajemy 10 · 1012 · 10−5s = 108s ≈ 27778g ≈ 1157d ≈ 3l.
Różnica wynikająca z różnych rzędów wielkości tych funkcji jest tak duża, że gdybyśmy
chcieli dokładniej uwzględnić różnice wartości czasów wykonywania poszczególnych
operacji, to nawet gdyby wnosiły one mnożniki typu 10×, 20×, 50×, to nie zniwelują
one dramatycznej różnicy czasów wykonania algorytmu w tych dwóch przypadkach.

Ten przykład ilustruje, dlaczego ma sens wyrażanie i porównywanie czasu pracy
algorytmów jako rzędu wielkości Θ, z pominięciem czynników stałych i wyrazów
niższego rzędu. Są jednak przypadki, kiedy te elementy mają znaczenie, a mianowicie
praca na mniejszych zbiorach danych. Gdy rozważamy taki ograniczony zbiór danych,
to algorytm o niższym rzędzie Θ może mieć wyższy rzeczywisty czas pracy.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 16



Uzupełnienie: czas pracy sortowania przez wstawianie
w przypadku średnim

Fakt: W przypadku średnim sortowanie przez wstawianie ma czas wykonania będący
kwadratem wielkości zbioru, czyli Θ(n2), a więc dokładnie takim jak w przypadku
najgorszym.

Jakkolwiek w pełni formalny i rygorystyczny dowód tego faktu można znaleźć
w literaturze, to na dość nieprecyzyjnym poziomie możemy zauważyć, że w przypadku
średnim algorytm wykona w każdym przebiegu pętli zewnętrznej część, nie całość, pętli
wewnętrznej, bo takiego rozrzutu wartości możemy oczekiwać w takim przypadku.
Jednak ta część będzie zawsze ułamkiem całkowitej liczby elementów, a nie jakąś
niewielką, stałą liczbą kroków.

A zatem otrzymujemy wzór na liczbę kroków w postaci: n · k
l n i po wyeliminowaniu

stałych otrzymamy zawsze wyrażenie n2.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 17



Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 18



Efektywność asymptotyczna i notacja asymptotyczna
Stwierdziliśmy, że ma sens porównywanie algorytmów ze względu na główny czynnik
wyrażenia określającego czas pracy algorytmu, co wiarygodnie określa czas działania
algorytmu jedynie dla dostatecznie dużych zbiorów danych. W ten sposób bierzemy
pod uwagę asymptotyczną efektywność algorytmu, czyli jego zachowanie gdy
rozmiar zbioru danych dąży do nieskończoności. Θ-wyrażenia służą do zapisu tej
asymptotycznej efektywności i ten zapis nazywamy notacją asymptotyczną.

Istnieją jeszcze inne rodzaje notacji asymptotycznej przydatnych w analizie algorytmów.
Notacja duże-O wyraża ograniczenie górne asymptotycznego wzrostu funkcji. Za
pomocą notacji duże-O możemy określić funkcje, które rosną asymptotycznie co
najmniej tak samo szybko jak dana funkcja. A zatem dla algorytmu, którego rząd
wzrostu czasu działania wynosi n2 możemy stwierdzić, że jego asymptotyczna
efektywność wynosi O(n2), ale jednocześnie wynosi ona O(n3), O(n5), O(n15), itd.

Analogicznie, notacja duże-Ω określa ograniczenie dolne asymptotycznego wzrostu
funkcji. A więc dla algorytmu, którego rząd wzrostu czasu działania wynosi n2 jego
asymptotyczna efektywność wynosi Ω(n2), ale jednocześnie wynosi Ω(n), Ω(log n), itp.

W odróżnieniu od tych dwóch ograniczeń (O i Ω), wprowadzona wcześniej notacja
duże-Θ wyraża dokładną funkcję wzrostu danej wartości. Funkcja n2 jest tylko Θ(n2).

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 19



Precyzyjne definicje notacji asymptotycznych

O(g(n)) = {f (n) : ∃c>0 n0>0 ∀n≥n0 0 ≤ f (n) ≤ cg(n)}
Ω(g(n)) = {f (n) : ∃c>0 n0>0 ∀n≥n0 0 ≤ cg(n) ≤ f (n)}
Θ(g(n)) = {f (n) : ∃c1>0 c2>0 n0>0 ∀n≥n0 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)}

Wyrażenie duże-O nazywamy asymptotycznym ograniczeniem górnym.
Wyrażenie duże-Ω nazywamy asymptotycznym ograniczeniem dolnym.
Wyrażenie duże-Θ nazywamy asymptotycznym ograniczeniem ciasnym.

Uwaga: pomimo iż formalnie definiujemy notacje asymptotyczne jako zbiory, potem
utożsamiamy je z pojedynczymi funkcjami, np. 2n2 + 3n + 5 = Θ(n2).

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 20



Własności notacji asymptotycznych

Przechodniość:

f (n) = Θ(g(n)) ∧ g(n) = Θ(h(n)) ⇒ f (n) = Θ(h(n))
f (n) = O(g(n)) ∧ g(n) = O(h(n)) ⇒ f (n) = O(h(n))
f (n) = Ω(g(n)) ∧ g(n) = Ω(h(n)) ⇒ f (n) = Ω(h(n))

Zwrotność:
f (n) = Θ(f (n))
f (n) = O(f (n))
f (n) = Ω(f (n))

Symetria
f (n) = Θ(g(n)) ⇔ g(n) = Θ(f (n))
f (n) = O(g(n)) ⇔ g(n) = Ω(f (n))

Zachodzi również następujące twierdzenie:
Dla dowolnych funkcji f (n) i g(n):

f (n) = Θ(g(n)) ⇔ f (n) = O(g(n)) ∧ f (n) = Ω(g(n))

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 21



Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna 22



Krótkie podsumowanie — pytania sprawdzające

1. Rozważ algorytm liniowego przeszukiwania tablicy w zakresie A[1 : n]. Napisz
pseudokod procedury implementującej ten algorytm. Argumentami będą: tablica A,
rozmiar n, i poszukiwana liczba x. Procedura zwróci indeks znalezionego elementu,
lub wartość −1 gdy go nie ma.

2. Sformułuj niezmiennik pętli algorytmu z poprzedniego pytania, i z jego
wykorzystaniem udowodnij poprawność algorytmu.

3. Sformułuj niezmiennik pętli wewnętrznej dla algorytmu Bubble-Sort,
i udowodnij jego zachowanie w algorytmie.

4. Następnie wykorzystując warunek zakończenia niezmiennika z poprzedniego pytania,
sformułuj niezmiennik pętli zewnętrznej algorytmu Bubble-Sort, i z jego
wykorzystaniem udowodnij poprawność całego algorytmu.

5. Rozważ algorytm przeszukiwania liniowego tablicy z pytania numer 1. Ile elementów
tablicy procedura przeszuka w najgorszym przypadku? A ile w przypadku średnim,
zakładając losowe rozmieszczenie elementów, i zakładając, że element znajduje się
w tablicy? Zapisz Θ-wyrażenia czasu działania algorytmu w obu przypadkach.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna — podsumowanie 23



Literatura i materiały pomocnicze

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein:
Wprowadzenie do algorytmów, PWN, 2024, rozdziały: 1, 2.1, 2.2, i 3.

Wstęp: algorytmy, poprawność i efektywność obliczeń, rząd wzrostu funkcji, notacja asymptotyczna — literatura 24


