
Przydział zasobów

Jedną z funkcji systemów operacyjnych jest przydział, albo alokacja, zasobów. Nadzór
systemu jest konieczny wtedy, gdy z danego zasobu może korzystać wyłącznie jeden
proces na raz.

Przykładami takich zasobów są:

• urządzenia peryferyjne, jak drukarki, napędy optyczne, itp.,

• porty komunikacyjne: szeregowe, równoległe, USB, itp.,

• globalne urządzenia programowe: semafory, obszary pamięci, itp.,

• blokady wyłączności nakładane na dostęp do plików, lub ich fragmentów.

Dwa podstawowe zasoby systemu komputerowego, obsługiwane przez system
operacyjny i przydzielane procesom dla umożliwienia ich wykonywania to: procesor oraz
pamięć. Te zasoby są przydzielane za pomocą dedykowanych, wyspecjalizowanych
algorytmów, i ich szczegółowe własności będą omawiane oddzielnie.

Zakleszczenia — alokacja zasobów 1



Wywłaszczanie zasobów

Wywłaszczaniem zasobów nazywamy ich odzyskiwanie po tym jak zostały przydzielone
procesom, ale zanim dany proces zdecydował się dobrowolnie dany zasób zwolnić.

Procesor i pamięć są przykładami zasobów, które system operacyjny w razie potrzeby
jest w stanie skutecznie wywłaszczać od procesów. Wykonujący się proces można
usunąć z procesora, by go następnie wznowić w niezauważalny dla niego sposób w cyklu
quasi-równoległego wykonywania. A jeśli procesowi została przydzielona pamięć, której
potrzebuje inny proces/inne procesy, to dzięki mechanizmom pamięci wirtualnej można
temu pierwszemu procesowi odebrać mniej potrzebne strony pamięci, lub ostatecznie
cały proces wymieść na dysk, i użyć jego pamięci dla innych celów. Po wznowieniu,
jego pamięć zostanie przywrócona do pierwotnego stanu drogą stronicowania.1

Jednak wielu zasobów nie da się bezkarnie wywłaszczać. Nie można odebrać procesowi
drukarki nie mając pewności na jakim etapie jest jego zadanie drukowania, nie można
odebrać mu portu komunikacyjnego jeśli jest możliwość, że rozpoczął on już
komunikację z jakimś podsystemem, oraz nie można odebrać mu semafora, bo ten
może zabezpieczać toczącą się transakcję, itd.

1Niekoniecznie jest to prawda w systemach czasu rzeczywistego. Obowiązują tam inne zasady i wywłaszczenie procesu

z procesora albo odebranie przydzielonej mu pamięci może naruszyć wymagania czasowe, które system operacyjny może

znać lub nie.

Zakleszczenia — alokacja zasobów 2



Uzyskiwanie dostępu do zasobów

Dla pewnych zasobów, korzystające z nich procesy muszą same obsługiwać kontrolę
dostępu do nich, ponieważ system operacyjnych nie zna logiki rządzącej tym dostępem.

Do zarządzania dostępem do zasobu można posłużyć się semaforem lub muteksem.
Przed użyciem zasobu proces zajmuje semafor (operacja down, być może czeka na
dostęp), a po użyciu zasobu zwalnia semafor (operacja up, nigdy nie musi czekać).
W przypadku korzystania z więcej niż jednego zasobu na raz, dostęp do nich musi być
uzyskiwany sekwencyjnie.

Zakleszczenia — alokacja zasobów 3



Powstawanie zakleszczeń

W przypadku różnych procesów konkurujących o dostęp do zasobów możliwe jest
napisanie programu w taki sposób, że kontrola dostępu do zasobu przebiega poprawnie
(kod po lewej), albo w taki sposób, że powstaje zakleszczenie (deadlock):

Zakleszczenia — powstawanie 4



Definicja zakleszczenia

Można sformułować następującą definicję zakleszczenia [Tanenbaum, Modern
Operating Systems, 3rd Edition]:

W przypadku zbioru procesów do zakleszczenia dochodzi wtedy, gdy każdy
proces w zbiorze oczekuje na zdarzenie, które może spowodować inny proces
z tego zbioru.

Ponieważ wszystkie procesy oczekują, żaden z nich nie spowoduje zdarzenia, na które
czeka ktoś inny. Procesy z tego zbioru są zatem zakleszczone i pozostaną tak na
zawsze. Zakładamy tu, że nic (np. sygnał) nie może przerwać tego czekania.

Typowym zdarzeniem, na które oczekują procesy jest przydział zasobu chwilowo
zajmowanego przez inny proces. Taki przypadek zakleszczenia nazywany jest
zakleszczeniem zasobów (nieco później rozważymy inne rodzaje zakleszczenia).

Zakleszczenia — definicja 5



Warunki powstawania zakleszczenia zasobów

Aby mogło dojść do zakleszczenia zasobów muszą być spełnione cztery warunki:

wzajemne wykluczanie — w danym momencie, każdy zasób jest albo przypisany
dokładnie do jednego procesu, albo jest dostępny

wstrzymywanie i oczekiwanie — procesy posiadające zasoby przydzielone
wcześniej mogą żądać nowych zasobów

brak wywłaszczania — przydzielone zasoby nie mogą być zabrane procesom; mogą
być jedynie dobrowolnie zwolnione

cykliczne oczekiwanie — musi istnieć cykl oczekiwania na zasoby złożony z dwóch
lub więcej procesów: każdy proces w tym łańcuchu oczekuje na zasób będący
w posiadaniu następnego procesu w łańcuchu

Powyższe warunki są warunkami koniecznymi powstania zakleszczenia. Gdy
którykolwiek z nich nie jest spełniony, wtedy do zakleszczenia na pewno nie dojdzie.

Zakleszczenia — warunki konieczne 6



Grafy alokacji zasobów

Stany procesów uzyskujących dostęp do zasobów można opisać za pomocą grafów
alokacji zasobów, na których procesy są reprezentowane przez węzły okrągłe, zasoby
jako węzły kwadratowe, a łuki reprezentują posiadanie oraz żądanie zasobów.

Rysunek (a) przedstawia proces (A) posiadający zasób [R].
Rysunek (b) przedstawia proces (B) żądający dostępu do zasobu [S].
Rysunek (c) przedstawia dwa zakleszczone procesy: (C) i (D). Proces (C) posiada
zasób [U] i czeka na zasób [T]. Proces (D) posiada zasób [T] i czeka na zasób [U].

Zakleszczenia — modelowanie 7



Przykład — sekwencja alokacji zasobów

Rozważmy przykład alokacji zasobów na powyższych rysunkach: (a),(b),(c). Jeśli
procesy będą uruchamiane sekwencyjnie, najpierw A do zakończenia, potem B do
zakończenia, i w końcu C, wtedy do zakleszczenia nie dojdzie.

Jednak jeśli te same procesy, wywołujące te same żądania zasobów w tej samej
kolejności, będą wykonywane współbieżnie, i sekwencja żądań zasobów będzie jak na
rysunku (d), wtedy tym razem dojdzie do zakleszczenia.

Zakleszczenia — modelowanie 8



Przykład — powstanie zakleszczenia

Powstanie zakleszczenia w poprzednim przykładzie można przedstawić na grafie
alokacji zasobów. Na rysunku (j) widać zakleszczenie po wydaniu przez proces (C)
żądania dostępu do zasobu [R].

Zakleszczenia — modelowanie 9



Przykład — eliminacja zakleszczenia

Jednak powstawanie zakleszczeń w przypadkach takich jak w poprzednim przykładzie
jest kwestią przypadku. Gdyby system operacyjny, zamiast przydzielać zasoby
procesowi (B), uruchamiał tylko procesy (A) i (C) — przypadkiem, lub świadomie,
przewidując nadchodzącą porażkę — do zakleszczenia by nie doszło, co ponownie
widać na grafach alokacji zasobów.

Zakleszczenia — modelowanie 10



Postępowanie z zakleszczeniami

Ogólnie można sformułować następujące podejścia do przeciwdziałania zakleszczeniom:

wykrywanie i usuwanie zakleszczenia — (deadlock detection and recovery)
dopuszczamy do powstania zakleszczenia, po czym wykrywamy je, i podejmujemy
działania w celu jego wyeliminowania

unikanie zakleszczenia — (deadlock avoidance) nie dopuszczamy do powstania
zakleszczenia poprzez ostrożną alokację zasobów

zapobieganie zakleszczeniom — (deadlock prevention) nie dopuszczamy do
powstania zakleszczenia poprzez wyeliminowanie jednego z warunków koniecznych
powstania zakleszczenia

Do powyższej listy można dodać jeszcze jedną „metodę” postępowania
z zakleszczeniami, zwaną algorytmem strusia (ostrich algorithm). Polega on na
całkowitym zignorowaniu problemu zakleszczeń. Problemy te powstają bowiem rzadko,
i są tylko jednym z możliwych zagrożeń przy tworzeniu wielowątkowych, współbieżnych
systemów. Jednocześnie, przeciwdziałanie zakleszczeniom którąkolwiek z powyższych
metod jest kosztowne, i ten koszt system operacyjny musiałby ponosić przy każdej
operacji przydziału zasobów. Większość współczesnych systemów operacyjnych
wychodzi z założenia, że nie opłaca się przeciwdziałać zakleszczeniom, i tego nie robi.

Zakleszczenia — ogólne metody przeciwdziałania 11



Zakleszczenia — ogólne metody przeciwdziałania 12



Wykrywanie zakleszczeń dla pojedynczych egzemplarzy

zasobów

W poniższym grafie alokacji zasobów (a) istnieje cykl, oznaczający wystąpienie
zakleszczenia. Na rysunku (b) wyodrębnione zostały procesy i zasoby biorące udział
w zakleszczeniu.

Zakleszczenia — wykrywanie 13



Algorytm wykrywania zakleszczenia dla pojedynczych

egzemplarzy

1. Dla każdego węzła N w grafie wykonaj poniższe kroki rozpoczynając od węzła N.

2. Stwórz pustą listę L; wszystkie łuki określ jako niezaznaczone.

3. Dodaj bieżący węzeł na koniec listy L, i sprawdź, czy węzeł występuje na L dwa
razy. Jeśli tak, to graf zawiera cykl. STOP.

4. Sprawdź, czy z tego węzła wychodzą dowolne niezaznaczone łuki. Jeśli tak, to
przejdź do kroku 5, a jeśli nie, to przejdź do kroku 6.

5. Losowo wybierz niezaznaczony wychodzący łuk, i go zaznacz. Następnie przejdź po
tym łuku do następnego węzła i skocz do kroku 3.

6. Jeśli jest to węzeł początkowy, to graf nie zawiera cyklu. STOP.
W przeciwnym wypadku osiągnęliśmy martwy koniec. Usuń węzeł z listy i przejdź do
poprzedniego węzła, czyli tego, który był bieżący przed węzłem aktualnie
analizowanym. Oznacz go jako bieżący i przejdź do kroku 3.

Zakleszczenia — wykrywanie 14



Przydatność analizy grafu do analizy zakleszczeń

Jak mogliśmy się przekonać, grafy alokacji zasobów pozwalają łatwo wykryć sytuację
gdy może dojść do zakleszczenia (albowiem dla danej czasowej sekwencji operacji do
tego zakleszczenia może nie dojść).

Ponadto, zwykły graf alokacji zasobów nie pozwala analizować sytuacji przydziału
wielu egzemplarzy konkretnych zasobów. Ponieważ takie sytuacje zdarzają się często
w praktyce, potrzebne jest inne podejście do analizy zakleszczeń.

Zakleszczenia — wykrywanie 15



Zakleszczenia — wykrywanie 16



Wykrywanie zakleszczeń dla wielu egzemplarzy zasobów

W przypadku istnienia wielu egzemplarzy pewnych zasobów konieczne jest inne
podejście. Oznaczmy liczbę klas zasobów m i ogólną liczbę egzemplarzy zasobu i przez
Ei. E = (E1, E2, ..., Em) będzie wektorem istniejących zasobów. Liczbę dostępnych
egzemplarzy zasobu i oznaczymy Ai, i A = (A1, A2, ..., Am) będzie wektorem
dostępnych zasobów.

C będzie macierzą bieżącej alokacji, a R — macierzą żądań dla n procesów.

Zakleszczenia — wykrywanie 17



Algorytm wykrywania zakleszczeń

Zauważmy, że dla przyjętych oznaczeń:

∀j[
n∑

i=1

Cij + Aj = Ej]

Przyjmijmy, że dla dwóch wektorów A i B zapis A 6 B oznacza, że wszystkie
elementy A są mniejsze lub równe odpowiednim elementom B.

Algorytm początkowo traktuje wszystkie procesy jako nieoznaczone. W trakcie pracy
oznacza te procesy, które mogą się wykonać korzystając z puli dostępnych zasobów. Po
zakończeniu proces może zwrócić wszystkie swoje zasoby do puli, co umożliwia
wykonanie się innym procesom.

1. Wybierz nieoznaczony proces Pi którego wiersz Ri macierzy R: Ri 6 A

Jeśli nie ma takiego procesu, to algorytm kończy działanie.

2. Jeśli taki proces zostanie znaleziony, niech jego numerem będzie i, dodaj i-ty wiersz
macierzy C (Ci) do A, oznacz proces i, i powróć do kroku 1.

Po zakończeniu algorytmu, wszystkie nieoznaczone procesy pozostają zakleszczone.
Algorytm jest niedeterministyczny, ale jego wynik jest zawsze taki sam.

Zakleszczenia — wykrywanie 18



Wykrywanie zakleszczeń — przykład

Początkowo jedynie dla procesu i = 3 mamy Ri 6 A. W efekcie otrzymujemy:

A = (2 2 2 0)

Teraz proces i = 2 ma Ri 6 A i może się wykonać. Otrzymujemy:

A = (4 2 2 1)

W końcu można uruchomić proces i = 1. W systemie nie ma zakleszczeń.

Zakleszczenia — wykrywanie 19



Realizacja wykrywania zakleszczeń w systemie

Pozostaje pytanie: kiedy system powinien podejmować wykrywanie zakleszczeń,
wykonując powyższy algorytm?

Jedna możliwość jest aby robić to po każdym zgłoszeniu żądania zasobów przez
dowolny proces. W takim przypadku system najszybciej jak to jest tylko możliwe
otrzyma informację o zagrażającym zakleszczeniu, i będzie mógł podjąć odpowiednie
działania.

Jednak powyższa metoda jest kosztowna. Alternatywną metodą jest okresowe
wykonywanie algorytmu, i/lub wtedy, gdy obciążenie procesora spadnie poniżej pewnej
wartości. Zauważmy, że gdy pewna liczba procesów zostanie zakleszczonych, nie będą
one wykonywane, co powinno spowodować spadek obciążenia procesora.

Zakleszczenia — wykrywanie 20



Usuwanie zakleszczeń przez wywłaszczanie

Niekiedy jest możliwe wywłaszczenie pewnych zasobów od wybranego procesu. Może
to wymagać ręcznej interwencji operatora.

Na przykład, wywłaszczenie drukarki może odbyć się przez zawieszenie procesu,
wyjęcie jego wykonanych już wydruków z drukarki, przydzielenie jej oczekującemu na
nią procesowi, a po jego zakończeniu włożenie wydrukowanego papieru z powrotem do
drukarki, i wznowienie zawieszonego procesu.

©

Zakleszczenia — usuwanie 21



Usuwanie zakleszczeń przez wycofywanie operacji

Program można przygotować do operacji usuwania zakleszczeń poprzez tworzenie
punktów kontrolnych zapisujących stan programu w pliku na dysku. Punkt
kontrolny zawiera obraz pamięci, stany rejestrów, jak również informację o przydziale
zasobów.

Po wykryciu zakleszczenia, system określa jaki(e) zasób(y) jest(są) potrzebny(e),
i który z zakleszczonych procesów je posiada i mógłby zostać cofnięty do punktu
kontrolnego. Gdy zasoby zostaną uwolnione, mogą być przydzielone innemu
zakleszczonemu procesowi.

Zakleszczenia — usuwanie 22



Usuwanie zakleszczeń przez zabijanie procesów

Czasami prościej niż wycofać proces do punktu kontrolnego jest po prostu go zabić.

§

Oczywiście zabity proces należy później uruchomić ponownie. Byłoby to
bezproblemowe, gdyby operacje wykonywane przez proces były idempotentne, to
znaczy takie, które można wykonywać wiele razy, a one tworzą takie (te) same wyniki.

Przykłady procesów idempotentnych:

• kompilacja jakiegoś systemu oprogramowania
• sprawdzanie spójności systemu plików, albo stanu macierzy RAID
• itp.

Natomiast realizacja pakietu przelewów bankowych (np. miesięcznych wypłat dla
pracowników jakiejś firmy) nie jest idempotentna, i normalnie nie można jej
bezpiecznie przerwać, i wykonać powtórnie. Ogólnie, procesy, które nie tylko obliczają
jakieś wyniki, ale tworzą efekty uboczne, typowo nie są idempotentne.

Zakleszczenia — usuwanie 23



Zakleszczenia — usuwanie 24



Unikanie zakleszczeń

Unikanie zakleszczeń jest zasadniczo innym podejściem, dążącym do
niedopuszczenia do zakleszczenia, poprzez wykrywanie sytuacji, kiedy mogłoby do
niego dojść, i zablokowanie operacji bezpośrednio do niego prowadzących.

Etap pierwszy, wykrywanie sytuacji mogących spowodować zakleszczenie, jest bardzo
podobny do wcześniejszego algorytmu wykrywania wystąpienia zakleszczenia.

Natomiast etap drugi, niedopuszczenie do zakleszczenia, jest prosty i elegancki,
w odróżnieniu od metod usuwania zakleszczeń. Po prostu, blokujemy krytyczną
operację przydziału zasobów, i do zakleszczenia nie dochodzi. System nie musi martwić
się jak proces rozwiąże problem odmowy przydziału zasobu, to jest teraz prywatny
problem procesu.

Zakleszczenia — unikanie 25



Trajektorie zasobów

Na diagramie widać wykonywanie kolejnych instrukcji dwóch procesów: A i B.
Trajektoria wykonania może biec wyłącznie do góry i w prawo. Obszary zakreślone
skośnymi liniami oznaczają równoczesny przydział zasobów procesom i są wykluczone.

W momencie s proces A przydzielił już drukarkę, a w momencie t proces B żąda
plotera. Jeśli to żądanie zostanie spełnione, to system wejdzie w obszar ograniczony
współrzędnymi [(I1, I5), (I4, I8)], z którego nie ma wyjścia, ponieważ w momencie
(I2, I6) dojdzie do zakleszczenia. Cały ten obszar jest niebezpieczny.

Zakleszczenia — unikanie 26



Stany bezpieczne i niebezpieczne

Będziemy opisywali stany przydziału zasobów dla zbioru procesów za pomocą
przedstawionych wcześniej wektorów E i A oraz macierzy C i R. Stan nazywamy
bezpiecznym jeśli istnieje pewien sposób szeregowania procesów pozwalający im
wykonać się do końca, nawet jeśli jednocześnie zażądają maksymalnej liczby zasobów.

Przedstawiony powyżej przykład ilustruje przydział pojedynczego zasobu z wieloma
egzemplarzami. Liczby w tabelkach wyrażają aktualny stan posiadania egzemplarzy
tego zasobu, oraz maksymalny przydział dla każdego procesu. Sekwencja rysunków
dowodzi, że stan przedstawiony na rysunku (a) jest bezpieczny.

Zakleszczenia — unikanie 27



Stany bezpieczne i niebezpieczne (2)

Rozważmy teraz taki sam stan początkowy, jak w poprzednim przykładzie (rysunek (a)
poniżej). Jednak proces A zażądał dodatkowej jednostki zasobu, i otrzymał go
(rysunek (b)). Ten stan nie jest bezpieczny.

Jedynym procesem, co do którego można mieć pewność, że poprawnie wykona się do
końca jest B (rysunki (c) i (d)). Jednak nawet po wykonaniu B i zwolnieniu jego
zasobów, żaden z procesów A i C nie będzie mógł poprawnie się wykonać.

Zauważmy, że stan przedstawiony na rysunku (d) nie jest stanem zakleszczenia. Nie
ma wcale pewności, że do zakleszczenia dojdzie. Gdyby proces A, przed zażądaniem
dodatkowych zasobów, na jakiś czas przynajmniej jeden zwolnił, proces C mógłby się
poprawnie zakończyć, a po nim A. Zatem o ile stan bezpieczny gwarantuje możliwość
poprawnej pracy systemu, w stanie niebezpiecznym jedynie nie ma takiej gwarancji.

Zakleszczenia — unikanie 28



Algorytm bankiera

Analizę powyższych przykładów można uogólnić do prostego algorytmu bezpiecznego
przydziału zasobów.

Algorytm bankiera2 (Dijkstra 1965) jest prostym uogólnieniem wcześniejszego
algorytmu sprawdzania wystąpienia zakleszczenia. Jego działanie można sformułować
za pomocą reguły:

Dla każdego żądania przydziału, sprawdź czy prowadzi ono do stanu
bezpiecznego, i gdy tak, to przydziel zasób. Gdy nie, odrzuć żądanie.

2Nazwa algorytmu nawiązuje do analogii bankiera przydzielającego pożyczki grupie klientów. Musi on tak gospodarować

pulą posiadanych środków aby przydzielać kredyty umożliwiające działanie niektórym klientom, podczas gdy innym kredyty

są wstrzymywane. Jeśli wszyscy klienci będą w stanie poprawnie zrealizować swe cele, i następnie spłacić swoje kredyty,

bankier wykonał swoje zadanie.

Zakleszczenia — unikanie 29



Algorytm bankiera — przykłady dla pojedynczego zasobu

Trzy stany alokacji zasobów: (a) bezpieczny, (b) bezpieczny, (c) niebezpieczny.

Zakleszczenia — unikanie 30



Algorytm bankiera dla wielu zasobów

Przedstawiony powyżej stan zasobów przydzielonych i jeszcze potrzebnych procesom
jest bezpieczny. Procesy mogą wykonać się na przykład w kolejności: D, A, B, C, E.

Jeżeli w tym stanie proces B zażądałby jednej drukarki, to żądanie to można spełnić,
ponieważ stan wynikowy nadal jest bezpieczny.

Jeżeli jednak następnie proces E również zażądałby drukarki, to tego żądania nie
można spełnić bo stan wynikowy nie byłby bezpieczny.

Zakleszczenia — unikanie 31



Algorytm bankiera dla wielu zasobów (2)

Algorytm sprawdzania, czy stan jest bezpieczny:

1. Znajdź w macierzy R rząd i odpowiadający procesowi Pi, którego wszystkie
niespełnione żądania zasobów Ri mogą być zaspokojone przez dostępne zasoby
Ri 6 A.

Jeśli nie można wybrać takiego procesu to w systemie może dojść do zakleszczenia.

2. Wybrany proces może poprawnie wykonać się do końca. Oznacz proces jako
zakończony, i dodaj jego posiadane zasoby do wektora A.

3. Powtarzaj kroki 1 i 2 dopóty, dopóki albo wszystkie procesy zostaną oznaczone jako
zakończone, ale pozostaną procesy, których żądań nie da się spełnić. W tym drugim
przypadku mamy do czynienia z potencjalnym zakleszczeniem.

Zakleszczenia — unikanie 32



Unikanie zakleszczeń — podsumowanie

Teoretycznie, algorytm bankiera rozwiązuje problem zakleszczeń w elegancki sposób,
bez uciekania się do opisanych wcześniej zabiegów usuwania powstałych zakleszczeń.

Jednak wymaga on pełnej znajomości rozkładu przyszłych żądań przydziału zasobów
wszystkich procesów. Jest to możliwe raczej tylko w zamkniętych systemach, gdzie
istnieje stała pula procesów, i ich charakterystyka jest znana. Ale w takich systemach
również możliwe są inne rozwiązania problemu zakleszczeń, prostsze niż analiza stanów
bezpiecznych. Co więcej, analiza stanów bezpiecznych może nie gwarantować
poprawnego sposobu szeregowania zadań, pomimo iż system może wykonać się
skutecznie. Natomiast jak wspomniano wcześniej, pełna analiza sekwencji przydziałów
zasobów przy każdym nowym żądaniu może być zbyt kosztowna w skali systemu. I na
koniec, szeregowanie procesów zgodne z bezpiecznym przydziałem zasobów może nie
być praktyczne (może wymagać zbyt długiego wstrzymywania niektórych procesów).

Dlatego unikanie zakleszczeń ma charakter teoretyczny, niezbyt przydatny praktycznie.
Zatem, czy istnieją metody bardziej praktyczne?

Można takie zaproponować w oparciu o warunki konieczne powstawania zakleszczeń.
Gdyby udało się wykluczyć przynajmniej jeden z tych warunków, to zakleszczenia nie
byłyby w ogóle możliwe. Prowadzi to do zapobiegania zakleszczeniom.

Zakleszczenia — unikanie 33



Zakleszczenia — unikanie 34



Zapobieganie: warunek wzajemnego wykluczania

Gdyby zasoby nie były przydzielane procesom na wyłączność, do zakleszczeń nie
mogłoby dojść. Jak to osiągnąć przy korzystaniu z zasobów przez wiele procesów?

Rozważmy dostęp do drukarki. Procesy mogą przydzielać ją sobie na wyłączność, ale
alternatywnie drukowanie może być obsługiwane przez jeden centralny proces, zwany
spoolerem. Udostępnia on interfejs funkcji drukowania, i procesy korzystają z niego
w celu skorzystania z drukarki.

To podejście można zastosować również do przydziału innych wybranych zasobów.
Należy jednak uważać. Jest teoretycznie możliwe powstanie zakleszczenia przy
korzystaniu z demona obsługującego dostęp do urządzenia. Jeśli demon opóźnia
wykonanie operacji do momentu otrzymania wszystkich danych, a pojemność bufora
ma ograniczoną, to dwa procesy mogą jednocześnie rozpocząć transmisję danych na
urządzenie, ale potem opóźniać ją, powodując częściowe zapełnienie bufora,
i niemożność dokończenia któregokolwiek zadania.

Zatem stosowanie tej metody warto połączyć z rozważnym korzystaniem z zasobów.
Przydział zasobu powinien następować wtedy gdy jest to absolutnie konieczne, oraz
gdy proces jest gotowy do szybkiego i skutecznego wykonania operacji na zasobie.

Zakleszczenia — zapobieganie 35



Zapobieganie: warunek wstrzymywania i oczekiwania

Jak można zapobiec temu, żeby procesy posiadające pewne zasoby, zawieszały się
w oczekiwaniu na inne?

Można wymagać, aby proces przydzielił sobie wszystkie potrzebne mu zasoby przed
rozpoczęciem przetwarzania. Jeśli nie będzie mógł przydzielić wszystkich zasobów, to
nie przydzieli żadnych, będzie na nie czekał, nie blokując jednak innych procesów.

Jednak nie wszystkie procesy wiedzą z góry, których zasobów będą potrzebowały
(gdyby wiedziały, możnaby stosować unikanie zakleszczeń za pomocą algorytmu
bankiera). W innych przypadkach możemy uzyskać nieoptymalne korzystanie
z zasobów. Jeśli proces najpierw długo korzysta z jednego zasobu, a potem krótko
z innego, to mógłby przez długi czas niepotrzebnie blokować oba zasoby.

Rozwiązaniem może być wymaganie, aby procesy przed każdą kolejną fazą obliczeń,
wymagającą innej konfiguracji zasobów, zwolniły wszystkie zasoby dotychczas
przetrzymywane, i uzyskały dostęp do wszystkich aktualnie potrzebnych zasobów od
nowa.

Zakleszczenia — zapobieganie 36



Zapobieganie: warunek braku wywłaszczania

Zanegowanie braku wywłaszczania oznacza możliwość wywłaszczania zasobów.

Przykładowym możliwym sposobem wywłaszczania zasobów jest by proces żądający
zasobu, który nie jest obecnie dostępny, musiał zwrócić wszystkie posiadane już
zasoby. Potem musiałby on od początku żądać i czekać na wszystkie zasoby. Byłby on
wznowiony dopiero wtedy, gdy wszystkie te zasoby będą dostępne.

Zakleszczenia — zapobieganie 37



Zapobieganie: warunek cyklicznego oczekiwania

Warunek cyklicznego oczekiwania można zanegować na kilka sposobów. Na przykład,
można żądać, aby każdy proces mógł przydzielić sobie tylko jeden zasób. Niestety,
w większości przypadków jest to nie do przyjęcia.

Innym sposobem może być globalne ponumerowanie zasobów, na przykład jak na
rysunku poniżej, oraz przyjęcie zasady: wiele zasobów może być przydzielonych, ale
tylko w kolejności zgodnej z ich numerami. W tej sytuacji graf alokacji zasobów nigdy
nie będzie miał cykli, i zakleszczenia nie mogą powstać.

Rozważmy przykład na powyższym rysunku. Proces (A) ma przydzielony zasób [i]
a proces (B) ma zasób (j). Do zakleszczenia mogłoby dojść, gdyby teraz proces (A)
zażądał zasobu [j] a proces (B) zasobu (i). Jednak jeśli są to różne zasoby, to albo
i < j albo na odwrót, i powyższa sekwencja alokacji zasobów prowadząca do
zakleszczenia, byłaby zabroniona.

Zakleszczenia — zapobieganie 38



Jest to również prawdą w przypadku zbioru procesów. Niech k będzie najwyższym
numerem już przydzielonego zasobu. Proces, który go przetrzymuje, nigdy nie zażąda
zasobu o numerze niższym. Najwyżej może zażądać jeszcze zasobu o numerze
wyższym, ale te są wszystkie wolne. Proces ostatecznie zakończy się, i zwolni wszystkie
zasoby. W tej sytuacji uwolniony będzie następny proces przetrzymujący zasób
o najwyższym numerze, i on również po jakimś czasie skończy i zwolni swoje zasoby.

Algorytm pozostaje słuszny, jeśli zażądamy przydziału zasobów w kolejności
niemalejących numerów (a niekoniecznie rosnących), oraz żeby proces nie mógł jedynie
przydzielać zasobów o numerze większym od tych, które aktualnie posiada
(a niekoniecznie tych które przydzielił wcześniej i zwolnił).

Numeracja zasobów jest rozwiązaniem problemu zakleszczeń. Jego wadą jest trudność
znalezienia globalnej numeracji zasobów, która zapewniłaby optymalne działanie
systemu w każdym przypadku.

Zakleszczenia — zapobieganie 39



Referencje

Większość materiału w tej prezentacji, w tym przykładów i rysunków, pochodzi
z podręcznika Andrew S. Tanenbauma: Modern Operating Systems, Third Edition,
Pearson Education, 2008, polskie wydanie: Systemy Operacyjne, Wydanie III, Helion
2010.

Zakleszczenia — referencje 40


