Przydziat zasobow

Jedna z funkcji systemow operacyjnych jest przydziat, albo alokacja, zasobéw. Nadzér
systemu jest konieczny wtedy, gdy z danego zasobu moze korzystaé wytacznie jeden
proces na raz.

Przyktadami takich zasobdw sa:

e urzadzenia peryferyjne, jak drukarki, napedy optyczne, itp.,

e porty komunikacyjne: szeregowe, rownolegte, USB, itp.,

e globalne urzadzenia programowe: semafory, obszary pamieci, itp.,

e blokady wyfacznosci naktadane na dostep do plikdw, lub ich fragmentéw.

Dwa podstawowe zasoby systemu komputerowego, obstugiwane przez system
operacyjny i przydzielane procesom dla umozliwienia ich wykonywania to: procesor oraz
pamieC. Te zasoby s3 przydzielane za pomoca dedykowanych, wyspecjalizowanych
algorytmédw, i ich szczegotowe wiasnosci bedg omawiane oddzielnie.

Zakleszczenia — alokacja zasobéw 1

Wywtaszczanie zasobow

Wywtaszczaniem zasobow nazywamy ich odzyskiwanie po tym jak zostaty przydzielone
procesom, ale zanim dany proces zdecydowat sie dobrowolnie dany zasob zwolnic.

Procesor i pamie¢ s3 przyktadami zasobdw, ktore system operacyjny w razie potrzeby
jest w stanie skutecznie wywfaszcza¢ od proceséw. Wykonujacy sie proces mozna
usunaC z procesora, by go nastepnie wznowi¢ w niezauwazalny dla niego sposéb w cyklu
quasi-rownolegtego wykonywania. A jesli procesowi zostata przydzielona pamie¢, ktore;
potrzebuje inny proces/inne procesy, to dzieki mechanizmom pamieci wirtualnej mozna
temu pierwszemu procesowi odebraC¢ mniej potrzebne strony pamieci, lub ostatecznie
caty proces wymies¢ na dysk, i uzy¢ jego pamieci dla innych celow. Po wznowieniu,
jego pamieé zostanie przywrécona do pierwotnego stanu droga stronicowania.?

Jednak wielu zasobow nie da sie bezkarnie wywtaszcza¢. Nie mozna odebrac procesowi
drukarki nie majac pewnosci na jakim etapie jest jego zadanie drukowania, nie mozna
odebra¢ mu portu komunikacyjnego jesli jest mozliwo$¢é, ze rozpoczat on juz
komunikacje z jakim$ podsystemem, oraz nie mozna odebra¢ mu semafora, bo ten
moze zabezpieczaé toczacy sie transakcje, itd.

INjekoniecznie jest to prawda w systemach czasu rzeczywistego. Obowiazuja tam inne zasady i wywtaszczenie procesu
z procesora albo odebranie przydzielonej mu pamieci moze naruszy¢ wymagania czasowe, ktére system operacyjny moze
znac lub nie.

Zakleszczenia — alokacja zasobéw 2

Uzyskiwanie dostepu do zasobow

Dla pewnych zasobéw, korzystajace z nich procesy musza same obstugiwaé kontrole
dostepu do nich, poniewaz system operacyjnych nie zna logiki rzadzacej tym dostepem.

Do zarzadzania dostepem do zasobu mozna postuzy¢ sie semaforem lub muteksem.
Przed uzyciem zasobu proces zajmuje semafor (operacja down, by¢ moze czeka na
dostep), a po uzyciu zasobu zwalnia semafor (operacja up, nigdy nie musi czekac).
W przypadku korzystania z wiecej niz jednego zasobu na raz, dostep do nich musi by¢
uzyskiwany sekwencyjnie.

typedef int semaphore; typedef int semaphore;
semaphore resource 1, semaphore resource 1,
semaphore resource 2;

void process_ A(void) { void process_ A(void) {
down(&resource 1); down(&resource 1);
use_ resource 1(); down(&resource 2);
up(&resource 1); use_both resources();
} up(&resource 2);

up(&resource _1);

Zakleszczenia — alokacja zasobdéw

Powstawanie zakleszczen

W przypadku réznych proceséw konkurujacych o dostep do zasobéw mozliwe jest
napisanie programu w taki sposéb, ze kontrola dostepu do zasobu przebiega poprawnie
(kod po lewej), albo w taki sposéb, ze powstaje zakleszczenie (deadlock):

typedef int semaphore;
semaphore resource 1;
semaphore resource 2;

semaphore resource 1,
semaphore resource 2,

void process A(void) { void process_A(void) {

}

down(&resource 1);
down(&resource 2),
use_both resources();
up(&resource _2);
up(&resource _1);

void process B(void) {

down(&resource 1);
down(&resource _2),
use_ both_resources();
up(&resource _2);
up(&resource 1);

}

down(&resource 1),
down(&resource 2),
use_both_resources();
up(&resource _2);
up(&resource _1);

void process_B(void) {

down(&resource 2);
down(&resource 1);
use_both_resources();
up(&resource 1),
up(&resource 2);

Zakleszczenia — powstawanie

Definicja zakleszczenia

Mozna sformutowad nastepujaca definicje zakleszczenia [Tanenbaum, Modern
Operating Systems, 3rd Edition]:

W przypadku zbioru procesow do zakleszczenia dochodzi wtedy, gdy kazdy
proces w zbiorze oczekuje na zdarzenie, ktore moze spowodowac inny proces

Z tego zbioru.

Poniewaz wszystkie procesy oczekuja, zaden z nich nie spowoduje zdarzenia, na ktére
czeka kto$ inny. Procesy z tego zbioru sa zatem zakleszczone i pozostang tak na
zawsze. Zaktadamy tu, ze nic (np. sygnat) nie moze przerwaé tego czekania.

Typowym zdarzeniem, na ktore oczekujg procesy jest przydziat zasobu chwilowo
zajmowanego przez inny proces. laki przypadek zakleszczenia nazywany jest
zakleszczeniem zasobdw (nieco pdzniej rozwazymy inne rodzaje zakleszczenia).

Zakleszczenia — definicja

Warunki powstawania zakleszczenia zasobow

Aby mogto dojs¢ do zakleszczenia zasobow musza byc spefnione cztery warunki:

wzajemne wykluczanie — w danym momencie, kazdy zasob jest albo przypisany
doktadnie do jednego procesu, albo jest dostepny

wstrzymywanie i oczekiwanie — procesy posiadajace zasoby przydzielone
wczesniej moga zadac nowych zasobdw

brak wywtaszczania — przydzielone zasoby nie mogg byC zabrane procesom; moga
byc jedynie dobrowolnie zwolnione

cykliczne oczekiwanie — musi istnie¢ cykl oczekiwania na zasoby ztozony z dwoch
lub wiecej procesow: kazdy proces w tym fancuchu oczekuje na zaséb bedacy
w posiadaniu nastepnego procesu w tancuchu

Powyzsze warunki s warunkami koniecznymi powstania zakleszczenia. Gdy
ktorykolwiek z nich nie jest spetniony, wtedy do zakleszczenia na pewno nie dojdzie.

Zakleszczenia — warunki konieczne 6

Grafy alokacji zasobow

Stany procesow uzyskujacych dostep do zasobéw mozna opisa¢ za pomoca graféow
alokacji zasobow, na ktorych procesy sg reprezentowane przez wezty okragte, zasoby
jako wezty kwadratowe, a tuki reprezentuja posiadanie oraz zadanie zasobdw.

T N
5 e e
(c)

(a) (b)

Rysunek (a) przedstawia proces (A) posiadajacy zaséb [R].

Rysunek (b) przedstawia proces (B) zadajacy dostepu do zasobu [S].

Rysunek (c) przedstawia dwa zakleszczone procesy: (C) i (D). Proces (C) posiada
zaséb [U] i czeka na zaséb [T]. Proces (D) posiada zaséb [T] i czeka na zaséb [U].

Zakleszczenia — modelowanie 7

Przyktad — sekwencja alokacji zasobow

A B C
Request R Request S Request T
Request S Request T Request R
Release R Release S Release T
Release S Release T Release R

(a) (b) (c)

Rozwazmy przyktad alokacji zasobéw na powyzszych rysunkach: (a),(b),(c). Jesli
procesy beda uruchamiane sekwencyjnie, najpierw A do zakonczenia, potem B do
zakonczenia, i w koncu C, wtedy do zakleszczenia nie dojdzie.

Jednak jesli te same procesy, wywotujace te same zadania zasobdw w tej same;
kolejnosci, beda wykonywane wspétbieznie, i sekwencja zadan zasobow bedzie jak na
rysunku (d), wtedy tym razem dojdzie do zakleszczenia.

1. Arequests R
st DO OO0 OO0
3.Crequests T e e e
4. Arequests S
5. Brequests T

S

6. C requests R
deadlock R S T R

(d) (e) (f) (9)

Zakleszczenia — modelowanie

Przyktad — powstanie zakleszczenia

Powstanie zakleszczenia w poprzednim przyktadzie mozna przedstawic¢ na grafie
alokacji zasobéw. Na rysunku (j) wida zakleszczenie po wydaniu przez proces (C)
zadania dostepu do zasobu [R].

1. Arequests R
st 90O OO0 OO0
3.Crequests T e e e
4. Arequests S
5.Brequesis T
6. C requests R

deadlock R S T R S

(d) (e) (f) (9)

® © C? (®)

T R S T

(h) (i)

Zakleszczenia — modelowanie

Przyktad — eliminacja zakleszczenia

Jednak powstawanie zakleszczen w przypadkach takich jak w poprzednim przykfadzie
jest kwestig przypadku. Gdyby system operacyjny, zamiast przydziela¢ zasoby
procesowi (B), uruchamiat tylko procesy (A) i (C) — przypadkiem, lub $wiadomie,
przewidujac nadchodzacy porazke — do zakleszczenia by nie doszto, co ponownie

wida¢ na grafach alokacji zasobow.

1. Arequests R

4. C requests R
5. Areleases R

GTD ﬁ*)@

5 Aroduests S ﬁ@ ©
R

R

S

T

AG

(m)

6. Areleases S
no deadlock S T
(k) (1)
R S T

(p)

R S T
(n)
OO, }7
R S T

Zakleszczenia — modelowanie

10

Postepowanie z zakleszczeniami

Ogolnie mozna sformutowaé nastepujace podejscia do przeciwdziatania zakleszczeniom:

wykrywanie i usuwanie zakleszczenia — (deadlock detection and recovery)
dopuszczamy do powstania zakleszczenia, po czym wykrywamy je, i podejmujemy
dziatania w celu jego wyeliminowania

unikanie zakleszczenia — (deadlock avoidance) nie dopuszczamy do powstania
zakleszczenia poprzez ostrozng alokacje zasobow

zapobieganie zakleszczeniom — (deadlock prevention) nie dopuszczamy do
powstania zakleszczenia poprzez wyeliminowanie jednego z warunkdéw koniecznych
powstania zakleszczenia

Do powyzszej listy mozna dodaé jeszcze jedng ,metode” postepowania

z zakleszczeniami, zwang algorytmem strusia (ostrich algorithm). Polega on na
catkowitym zignorowaniu problemu zakleszczen. Problemy te powstajg bowiem rzadko,
i sg tylko jednym z mozliwych zagrozen przy tworzeniu wielowgtkowych, wspdtbieznych
systemdéw. Jednoczesnie, przeciwdziatanie zakleszczeniom ktérgkolwiek z powyzszych
metod jest kosztowne, i ten koszt system operacyjny musiatby ponosic przy kazdej
operacji przydziatu zasobow. Wiekszos¢ wspotczesnych systemow operacyjnych
wychodzi z zatozenia, ze nie optaca sie przeciwdziata¢ zakleszczeniom, i tego nie robi.

Zakleszczenia — ogolne metody przeciwdziatania 11

Zakleszczenia — ogdlne metody przeciwdziatania

12

Wykrywanie zakleszczen dla pojedynczych egzemplarzy
zasobow

W ponizszym grafie alokacji zasobéw (a) istnieje cykl, oznaczajacy wystapienie
zakleszczenia. Na rysunku (b) wyodrebnione zostaty procesy i zasoby biorace udziat
w zakleszczeniu.

@—»54 @ | T |—> ®_;-|—_,..,
A

)
T

Zakleszczenia — wykrywanie

13

Algorytm wykrywania zakleszczenia dla pojedynczych
egzemplarzy

1. Dla kazdego wezta N w grafie wykonaj ponizsze kroki rozpoczynajac od wezta N.
2. Stwoérz pusta liste L; wszystkie tuki okresl jako niezaznaczone.

3. Dodaj biezagcy wezet na koniec listy L, i sprawdz, czy wezet wystepuje na L dwa
razy. Jesli tak, to graf zawiera cykl. STOP.

4. Sprawdz, czy z tego wezta wychodza dowolne niezaznaczone tuki. Jesli tak, to
przejdz do kroku 5, a jesli nie, to przejdz do kroku 6.

5. Losowo wybierz niezaznaczony wychodzacy tuk, i go zaznacz. Nastepnie przejdz po
tym tuku do nastepnego wezta i skocz do kroku 3.

6. Jesli jest to wezet poczatkowy, to graf nie zawiera cyklu. STOP.
W przeciwnym wypadku osiggneliSmy martwy koniec. Usun wezet z listy i przejdz do
poprzedniego wezta, czyli tego, ktéry byt biezacy przed weztem aktualnie
analizowanym. Oznacz go jako biezacy i przejdz do kroku 3.

Zakleszczenia — wykrywanie 14

Przydatnos¢ analizy grafu do analizy zakleszczen

Jak moglismy sie przekonaé, grafy alokacji zasobow pozwalajg tatwo wykry¢ sytuacje
gdy moze dojs¢ do zakleszczenia (albowiem dla danej czasowej sekwencji operacji do
tego zakleszczenia moze nie dojéc).

Ponadto, zwykty graf alokacji zasobéw nie pozwala analizowac sytuacji przydziatu
wielu egzemplarzy konkretnych zasobdw. Poniewaz takie sytuacje zdarzaja sie czesto
w praktyce, potrzebne jest inne podejscie do analizy zakleszczen.

Zakleszczenia — wykrywanie

15

Zakleszczenia — wykrywanie

16

Wykrywanie zakleszczen dla wielu egzemplarzy zasobow

W przypadku istnienia wielu egzemplarzy pewnych zasobdw konieczne jest inne
podejscie. Oznaczmy liczbe klas zasobow m i ogdlng liczbe egzemplarzy zasobu i przez
E;. E = (Fy, Es, ..., E,,) bedzie wektorem istniejacych zasobdw. Liczbe dostepnych
egzemplarzy zasobu ¢ oznaczymy A;, i A = (A1, Ao, ..., A,;,) bedzie wektorem
dostepnych zasobdw.

Resources in existence Resources available
({ =S =P PR = (A, A Ag AL
Current allocation matrix Request matrix
Cit Cpp Gy -0 Gy Ry Ry Ry Rim
Coi Cp Cpy o Gy Ryy Ry Ry 0 Ry,
(t _Gm Cro Cpa ~ IGnrﬂ_ _HM Rz Bpa - Hnm_
Row n is current allocation Row 2 is what process 2 needs

to process n

C' bedzie macierza biezacej alokacji, a R — macierza zadan dla n procesow.

Zakleszczenia — wykrywanie 17

Algorytm wykrywania zakleszczen

Zauwazmy, ze dla przyjetych oznaczen:

Vj[.i Cij +A; = Ej]

Przyjmijmy, ze dla dwoch wektorow A i B zapis A < B oznacza, ze wszystkie
elementy A sg mniejsze lub réwne odpowiednim elementom B.

Algorytm poczatkowo traktuje wszystkie procesy jako nieoznaczone. W trakcie pracy
oznacza te procesy, ktére moga sie wykonac korzystajac z puli dostepnych zasobow. Po
zakonczeniu proces moze zwrdéci¢ wszystkie swoje zasoby do puli, co umozliwia
wykonanie sie innym procesom.

1. Wybierz nieoznaczony proces P; ktorego wiersz R; macierzy R: R; < A
Jesli nie ma takiego procesu, to algorytm konczy dziatanie.

2. Jesli taki proces zostanie znaleziony, niech jego numerem bedzie 7, dodaj i-ty wiersz
macierzy C' (C;) do A, oznacz proces i, i powrdé do kroku 1.

Po zakonczeniu algorytmu, wszystkie nieoznaczone procesy pozostaja zakleszczone.
Algorytm jest niedeterministyczny, ale jego wynik jest zawsze taki sam.

Zakleszczenia — wykrywanie 18

Wykrywanie zakleszczen — przyktad

& &
a:h f:.‘r {1..'7_';""@ G‘(Q? H;h f‘J {g}a .G(Q?
o @ & & o ¢ &L
R o P X QY of ¥
E=(4 2 3 1) A=(2 1 0 0)
Current allocation matrix Request matrix
0 010 2 0 0 1
C=|2 0 0 1 R=(1 0 1 0
01 2 0 2 1 0 0

Poczatkowo jedynie dla procesu i = 3 mamy R; < A. W efekcie otrzymujemy:
A=(2220)

Teraz proces i = 2 ma R; < A i moze sie wykonac. Otrzymujemy:
A=(4221)

W koncu mozna uruchomic proces : = 1. W systemie nie ma zakleszczen.

Zakleszczenia — wykrywanie

19

Realizacja wykrywania zakleszczen w systemie

Pozostaje pytanie: kiedy system powinien podejmowac wykrywanie zakleszczen,
wykonujac powyzszy algorytm?

Jedna mozliwosc jest aby robi¢ to po kazdym zgtoszeniu zadania zasobdw przez
dowolny proces. W takim przypadku system najszybciej jak to jest tylko mozliwe
otrzyma informacje o zagrazajagcym zakleszczeniu, i bedzie mégt podja¢ odpowiednie
dziatania.

Jednak powyzsza metoda jest kosztowna. Alternatywng metodg jest okresowe
wykonywanie algorytmu, i/lub wtedy, gdy obciazenie procesora spadnie ponizej pewnej
wartosci. Zauwazmy, ze gdy pewna liczba proceséw zostanie zakleszczonych, nie bedg
one wykonywane, co powinno spowodowac spadek obcigzenia procesora.

Zakleszczenia — wykrywanie 20

Usuwanie zakleszczen przez wywtaszczanie

Niekiedy jest mozliwe wywtaszczenie pewnych zasobow od wybranego procesu. Moze
to wymagac recznej interwencji operatora.

Na przykfad, wywtaszczenie drukarki moze odby¢ sie przez zawieszenie procesu,
wyjecie jego wykonanych juz wydrukéw z drukarki, przydzielenie jej oczekujgcemu na
nig procesowi, a po jego zakonczeniu wtozenie wydrukowanego papieru z powrotem do
drukarki, i wznowienie zawieszonego procesu.

©

Zakleszczenia — usuwanie 21

Usuwanie zakleszczen przez wycofywanie operacji

Program mozna przygotowac do operacji usuwania zakleszczen poprzez tworzenie
punktow kontrolnych zapisujacych stan programu w pliku na dysku. Punkt
kontrolny zawiera obraz pamieci, stany rejestrow, jak rowniez informacje o przydziale
zasobow.

Po wykryciu zakleszczenia, system okresla jaki(e) zasob(y) jest(sa) potrzebny(e),
| ktory z zakleszczonych proceséw je posiada i mégtby zostaé cofniety do punktu
kontrolnego. Gdy zasoby zostang uwolnione, moga by¢ przydzielone innemu
zakleszczonemu procesowi.

Zakleszczenia — usuwanie 22

Usuwanie zakleszczen przez zabijanie procesow

Czasami prosciej niz wycofa¢ proces do punktu kontrolnego jest po prostu go zabic.

©

Oczywiscie zabity proces nalezy p6zniej uruchomié¢ ponownie. Bytoby to
bezproblemowe, gdyby operacje wykonywane przez proces byty idempotentne, to
znaczy takie, ktére mozna wykonywa¢ wiele razy, a one tworza takie (te) same wyniki.

Przyktady proceséw idempotentnych:

e kompilacja jakiegos systemu oprogramowania
e sprawdzanie spdjnosci systemu plikow, albo stanu macierzy RAID
o itp.

Natomiast realizacja pakietu przelewéw bankowych (np. miesiecznych wyptat dla
pracownikow jakiejs firmy) nie jest idempotentna, i normalnie nie mozna jej
bezpiecznie przerwaé, i wykonac powtornie. Ogdlnie, procesy, ktoére nie tylko obliczajg
jakie$ wyniki, ale tworza efekty uboczne, typowo nie s3 idempotentne.

Zakleszczenia — usuwanie 23

Zakleszczenia — usuwanie

24

Unikanie zakleszczen

Unikanie zakleszczen jest zasadniczo innym podejsciem, dgzacym do
niedopuszczenia do zakleszczenia, poprzez wykrywanie sytuacji, kiedy mogtoby do
niego dojs¢, i zablokowanie operacji bezposrednio do niego prowadzacych.

Etap pierwszy, wykrywanie sytuacji mogacych spowodowac zakleszczenie, jest bardzo
podobny do wczesniejszego algorytmu wykrywania wystgpienia zakleszczenia.

Natomiast etap drugi, niedopuszczenie do zakleszczenia, jest prosty i elegancki,

w odrdéznieniu od metod usuwania zakleszczen. Po prostu, blokujemy krytyczna
operacje przydziatu zasobow, i do zakleszczenia nie dochodzi. System nie musi martwic
sie jak proces rozwigze problem odmowy przydziatu zasobu, to jest teraz prywatny
problem procesu.

Zakleszczenia — unikanie 25

Trajektorie zasobow

B ® u (Both processes

finished)
'8 77
-

UMM

Printer

|
Plotter l5 T
r |
- e ey
r s
|
|
|
p q I I |5 |4

Printer =———»
—~— = Plotter

Na diagramie wida¢ wykonywanie kolejnych instrukcji dwoch procesow: A i B.
Trajektoria wykonania moze biec wytacznie do gory i w prawo. Obszary zakreslone
skoSnymi liniami oznaczajg réwnoczesny przydziat zasobow procesom i s3 wykluczone.

W momencie s proces A przydzielit juz drukarke, a w momencie t proces B zada
plotera. Jesli to zadanie zostanie spetnione, to system wejdzie w obszar ograniczony
wspotrzednymi [(11, I5), (14, Is)], z ktdrego nie ma wyjscia, poniewaz w momencie
(15, Is) dojdzie do zakleszczenia. Caty ten obszar jest niebezpieczny.

Zakleszczenia — unikanie 26

Stany bezpieczne i niebezpieczne

Bedziemy opisywali stany przydziatu zasobdw dla zbioru proceséw za pomoca
przedstawionych wczesniej wektoréow E i A oraz macierzy C' i R. Stan nazywamy
bezpiecznym jesli istnieje pewien sposob szeregowania proceséw pozwalajacy im

wykonac sie do konca, nawet jesli jednoczesnie zazadajg maksymalnej liczby zasobdw.

Has Max Has Max Has Max Has Max Has Max
A 3 9 A 3 9 A 3 9 A 3 9 A 3 9
B 2 4 B 4 4 B 0 - B 0 - B 0 -
C 2 7 C 2 7 C 2 7 C 7 7 C 0 -
Free: 3 Free: 1 Free: 5 Free: 0 Free: 7
(a) (b) (c) (d) (e)

Przedstawiony powyzej przyktad ilustruje przydziat pojedynczego zasobu z wieloma
egzemplarzami. Liczby w tabelkach wyrazaja aktualny stan posiadania egzemplarzy
tego zasobu, oraz maksymalny przydziat dla kazdego procesu. Sekwencja rysunkow

dowodzi, ze stan przedstawiony na rysunku (a) jest bezpieczny.

Zakleszczenia — unikanie

27

Stany bezpieczne i niebezpieczne (2)

Rozwazmy teraz taki sam stan poczatkowy, jak w poprzednim przyktadzie (rysunek (a)
ponizej). Jednak proces A zazadat dodatkowej jednostki zasobu, i otrzymat go
(rysunek (b)). Ten stan nie jest bezpieczny.

Has Max Has Max Has Max Has Max
Al 3 9 Al 4 9 Al 4] 9 Al 4| 9
B | 2 4 B | 2 4 B| 4| 4 Bl —| —
C|l 2 7 C|l 2 7 Cl 2 7 Cl 2 7

Free: 3 Free: 2 Free: 0 Free: 4

Jedynym procesem, co do ktérego mozna mie¢ pewnosS¢, ze poprawnie wykona sie do
konca jest B (rysunki (c) i (d)). Jednak nawet po wykonaniu B i zwolnieniu jego
zasobow, zaden z procesow A i C nie bedzie mogt poprawnie sie wykonac.

Zauwazmy, ze stan przedstawiony na rysunku (d) nie jest stanem zakleszczenia. Nie
ma wcale pewnosci, ze do zakleszczenia dojdzie. Gdyby proces A, przed zazadaniem
dodatkowych zasobow, na jaki$ czas przynajmniej jeden zwolnif, proces C mogtby sie
poprawnie zakonczy¢, a po nim A. Zatem o ile stan bezpieczny gwarantuje mozliwosc
poprawnej pracy systemu, w stanie niebezpiecznym jedynie nie ma takiej gwarancji.

Zakleszczenia — unikanie 28

Algorytm bankiera

Analize powyzszych przyktadow mozna uogdlni¢ do prostego algorytmu bezpiecznego
przydziatu zasobow.

Algorytm bankiera? (Dijkstra 1965) jest prostym uogdlnieniem wczeéniejszego
algorytmu sprawdzania wystgpienia zakleszczenia. Jego dziatanie mozna sformufowac
za pomoca reguty:

Dla kazdego zadania przydziatu, sprawdz czy prowadzi ono do stanu
bezpiecznego, i gdy tak, to przydziel zaséb. Gdy nie, odrzuc¢ zadanie.

2Nazwa algorytmu nawiagzuje do analogii bankiera przydzielajacego pozyczki grupie klientéw. Musi on tak gospodarowac
pula posiadanych Srodkéw aby przydziela¢ kredyty umozliwiajace dziatanie niektérym klientom, podczas gdy innym kredyty
sg wstrzymywane. Jesli wszyscy klienci beda w stanie poprawnie zrealizowac swe cele, i nastepnie sptaci¢ swoje kredyty,
bankier wykonat swoje zadanie.

Zakleszczenia — unikanie 29

Algorytm bankiera — przyktady dla pojedynczego zasobu

Has Max Has Max Has Max
A 0 6 A 1 6 A 1 6
B 0 5 B 1 5 B 2 5
C 0 4 C 2 4 C 2 4
D 0 7 D 4 7 D 4 7
Free: 10 Free: 2 Free: 1

(@) (b) (c)

Trzy stany alokacji zasobéw: (a) bezpieczny, (b) bezpieczny, (c) niebezpieczny.

Zakleszczenia — unikanie

30

Algorytm bankiera dla wielu zasobow

2D 2 ,,;{2"

cs‘-’-‘s»«fﬂ@c‘@‘ e‘ﬂsi“@@c’é@

& o W@ @ QQ» G o 2@ & QQ»
T F P O T AF T O
AlI3|10]1]1 AfJ1]11101]0 E = (6342)

P =(5322)

Bjof1]0]o0 Bpof1]1]2 A = (1020)
cpi1|1|1]0 Cg3|1|0]o0
Dfg1|[1]0]1 Djgo|0]1]0
EJof(Oo]0]oO Ega2|1|1]0
Resources assigned Resources still needed

Przedstawiony powyzej stan zasobow przydzielonych i jeszcze potrzebnych procesom
jest bezpieczny. Procesy moga wykonac sie na przyktad w kolejnosci: D, A, B, C, E.

Jezeli w tym stanie proces B zazadatby jednej drukarki, to zadanie to mozna spetnic,
poniewaz stan wynikowy nadal jest bezpieczny.

Jezeli jednak nastepnie proces E rowniez zazadatby drukarki, to tego zadania nie
mozna spetni¢ bo stan wynikowy nie bytby bezpieczny.

Zakleszczenia — unikanie

Algorytm bankiera dla wielu zasobéw (2)

Algorytm sprawdzania, czy stan jest bezpieczny:

1. Znajdz w macierzy R rzad ¢ odpowiadajacy procesowi P;, ktérego wszystkie
niespetnione zadania zasobow R; moga byc zaspokojone przez dostepne zasoby

R; < A.

Jesli nie mozna wybrac¢ takiego procesu to w systemie moze dojs¢ do zakleszczenia.

2. Wybrany proces moze poprawnie wykonac sie do konca. Oznacz proces jako
zakonczony, i dodaj jego posiadane zasoby do wektora A.

3. Powtarzaj kroki 1 i 2 dopéty, dopdki albo wszystkie procesy zostang oznaczone jako
zakonczone, ale pozostang procesy, ktérych zadan nie da sie spetnic. W tym drugim
przypadku mamy do czynienia z potencjalnym zakleszczeniem.

Zakleszczenia — unikanie 32

Unikanie zakleszczen — podsumowanie

Teoretycznie, algorytm bankiera rozwigzuje problem zakleszczen w elegancki sposéb,
bez uciekania sie do opisanych wczesniej zabiegow usuwania powstatych zakleszczen.

Jednak wymaga on petnej znajomosci rozktadu przysztych zadan przydziatu zasobow
wszystkich proceséw. Jest to mozliwe raczej tylko w zamknietych systemach, gdzie
istnieje stata pula procesdw, i ich charakterystyka jest znana. Ale w takich systemach
rowniez mozliwe s3 inne rozwigzania problemu zakleszczen, prostsze niz analiza stanéw
bezpiecznych. Co wiecej, analiza stanow bezpiecznych moze nie gwarantowac
poprawnego sposobu szeregowania zadan, pomimo iz system moze wykonac¢ sie
skutecznie. Natomiast jak wspomniano wczesniej, petna analiza sekwencji przydziatow
zasobow przy kazdym nowym zadaniu moze byc zbyt kosztowna w skali systemu. | na
koniec, szeregowanie procesow zgodne z bezpiecznym przydziatem zasobéw moze nie
by¢ praktyczne (moze wymagac zbyt dtugiego wstrzymywania niektérych proceséw).

Dlatego unikanie zakleszczen ma charakter teoretyczny, niezbyt przydatny praktycznie.
Zatem, czy istniejg metody bardziej praktyczne?

Mozna takie zaproponowac w oparciu o warunki konieczne powstawania zakleszczen.
Gdyby udato sie wykluczy¢ przynajmniej jeden z tych warunkdéw, to zakleszczenia nie
bytyby w ogdle mozliwe. Prowadzi to do zapobiegania zakleszczeniom.

Zakleszczenia — unikanie 33

Zakleszczenia — unikanie

34

Zapobieganie: warunek wzajemnego wykluczania

Gdyby zasoby nie byty przydzielane procesom na wytacznosé, do zakleszczen nie
mogtoby dojs¢. Jak to osiggnac przy korzystaniu z zasobow przez wiele procesow?

Rozwazmy dostep do drukarki. Procesy moga przydziela¢ j3 sobie na wytacznosc, ale
alternatywnie drukowanie moze by¢ obstugiwane przez jeden centralny proces, zwany
spoolerem. Udostepnia on interfejs funkcji drukowania, i procesy korzystajg z niego
w celu skorzystania z drukarki.

To podejscie mozna zastosowaé rowniez do przydziatu innych wybranych zasobow.
Nalezy jednak uwazac. Jest teoretycznie mozliwe powstanie zakleszczenia przy
korzystaniu z demona obstugujacego dostep do urzadzenia. Jesli demon opdznia
wykonanie operacji do momentu otrzymania wszystkich danych, a pojemno$¢ bufora
ma ograniczong, to dwa procesy moga jednoczesnie rozpoczac transmisje danych na
urzadzenie, ale potem opdzniac j3, powodujac czesciowe zapetnienie bufora,

i niemozno$¢ dokonczenia ktéregokolwiek zadania.

Zatem stosowanie tej metody warto potaczyé z rozwaznym korzystaniem z zasobodw.
Przydziat zasobu powinien nastepowac wtedy gdy jest to absolutnie konieczne, oraz
gdy proces jest gotowy do szybkiego i skutecznego wykonania operacji na zasobie.

Zakleszczenia — zapobieganie

Zapobieganie: warunek wstrzymywania i oczekiwania

Jak mozna zapobiec temu, zeby procesy posiadajace pewne zasoby, zawieszaty sie
w oczekiwaniu na inne?

Mozna wymagaé, aby proces przydzielit sobie wszystkie potrzebne mu zasoby przed
rozpoczeciem przetwarzania. Jesli nie bedzie mégt przydzieli¢ wszystkich zasobow, to
nie przydzieli zadnych, bedzie na nie czekat, nie blokujac jednak innych procesow.

Jednak nie wszystkie procesy wiedzg z gory, ktorych zasobdéw bedg potrzebowaty
(gdyby wiedziaty, moznaby stosowal unikanie zakleszczen za pomoca algorytmu
bankiera). W innych przypadkach mozemy uzyska¢ nieoptymalne korzystanie

z zasobow. Jesli proces najpierw dtugo korzysta z jednego zasobu, a potem krétko
z innego, to mégtby przez dtugi czas niepotrzebnie blokowac oba zasoby.

Rozwigzaniem moze by¢ wymaganie, aby procesy przed kazdg kolejng faza obliczen,
wymagajaca innej konfiguracji zasobow, zwolnity wszystkie zasoby dotychczas
przetrzymywane, i uzyskaty dostep do wszystkich aktualnie potrzebnych zasobdéw od
nowa.

Zakleszczenia — zapobieganie

Zapobieganie: warunek braku wywtaszczania

Zanegowanie braku wywfaszczania oznacza mozliwos¢ wywtaszczania zasobow.

Przyktadowym mozliwym sposobem wywtaszczania zasobdw jest by proces zadajacy
zasobu, ktory nie jest obecnie dostepny, musiat zwréci¢ wszystkie posiadane juz
zasoby. Potem musiatby on od poczatku zadac i czekaé na wszystkie zasoby. Bytby on
wznowiony dopiero wtedy, gdy wszystkie te zasoby bedg dostepne.

Zakleszczenia — zapobieganie 37

Zapobieganie: warunek cyklicznego oczekiwania

Warunek cyklicznego oczekiwania mozna zanegowac na kilka sposobow. Na przykfad,
mozna zadac, aby kazdy proces mogt przydzieli¢ sobie tylko jeden zasob. Niestety,
w wiekszosci przypadkéw jest to nie do przyjecia.

Innym sposobem moze byc globalne ponumerowanie zasobdéw, na przyktad jak na
rysunku ponizej, oraz przyjecie zasady: wiele zasobéw moze by¢ przydzielonych, ale
tylko w kolejnosci zgodnej z ich numerami. W tej sytuacji graf alokacji zasobéw nigdy
nie bedzie miat cykli, i zakleszczenia nie moga powstac.

1. Imagesetter @

2. Scanner T T
3. Plotter

4. Tape drive

5. CD-ROM drive

Rozwazmy przyktad na powyzszym rysunku. Proces (A) ma przydzielony zaséb [i]

a proces (B) ma zaséb (j). Do zakleszczenia mogtoby dojs¢, gdyby teraz proces (A)
zazadat zasobu [j| a proces (B) zasobu (i). Jednak jesli s3 to rézne zasoby, to albo
1 < 7 albo na odwrét, i powyzsza sekwencja alokacji zasobéw prowadzaca do
zakleszczenia, bytaby zabroniona.

Zakleszczenia — zapobieganie 38

Jest to réwniez prawda w przypadku zbioru proceséw. Niech &k bedzie najwyzszym
numerem juz przydzielonego zasobu. Proces, ktéry go przetrzymuje, nigdy nie zazada
zasobu o numerze nizszym. Najwyzej moze zazadac jeszcze zasobu o numerze
wyzszym, ale te s3 wszystkie wolne. Proces ostatecznie zakonczy sig, i zwolni wszystkie
zasoby. W tej sytuacji uwolniony bedzie nastepny proces przetrzymujacy zasob

0 najwyzszym numerze, i on réwniez po jakims czasie skonczy i zwolni swoje zasoby.

Algorytm pozostaje stuszny, jesli zazagdamy przydziatu zasobéw w kolejnosci
niemalejacych numerdw (a niekoniecznie rosnacych), oraz zeby proces nie mégt jedynie
przydzielac zasobow o numerze wiekszym od tych, ktére aktualnie posiada

(a niekoniecznie tych ktére przydzielit wczesniej i zwolnit).

Numeracja zasobdw jest rozwigzaniem problemu zakleszczen. Jego wadg jest trudnosc
znalezienia globalnej numeracji zasobow, ktora zapewnitaby optymalne dziatanie
systemu w kazdym przypadku.

Zakleszczenia — zapobieganie 39

Referencje

Wiekszos¢ materiatu w tej prezentacji, w tym przyktaddéw i rysunkéw, pochodzi
z podrecznika Andrew S. Tanenbauma: Modern Operating Systems, Third Edition,

Pearson Education, 2008, polskie wydanie: Systemy Operacyjne, Wydanie Ill, Helion
2010.

Zakleszczenia — referencje

40

