
Szeregowanie wieloprocesorowe — wstęp

Na pozór można zrealizować szeregowanie w systemach wieloprocesorowych tymi
samymi metodami co w systemach jednoprocesorowych. To znaczy, w przypadku
szeregowania zdarzeniowego można zdarzenia wyzwalające pracę planisty i decyzję
o rozpoczęciu wykonywania kolejno wybranego procesu odnieść do wszystkich
procesorów. Za każdym razem kiedy zwolni się jeden z procesorów, planista
wyznaczałby kolejne zadanie do uruchomienia na tym procesorze, a w przypadku
planowania z wywłaszczaniem, za każdym razem gdyby pojawiło się nowe zadanie,
planista sprawdzałby czy któregoś z zadań obliczanych na wszystkich procesorach nie
należałoby wywłaszczyć.

Podobnie w przypadku planowania okresowego, jak Round Robin, można tę metodę
rozszerzyć na przypadek wielu procesorów i — po upłynięciu kolejnego kwantu czasu
dla każdego z procesorów — uruchamiać na nim kolejne zadania z kolejki gotowych.

Jednak to podejście jest z pewnych względów zwykle nieoptymalne. Gdyby to samo
zadanie miało być ponownie wykonywane w kolejnym kwancie czasu, to bardzo
korzystna byłaby kontynuacja jego wykonywania na tym samym procesorze, po
pierwsze ze względu na brak konieczności przełączenia kontekstu, czyli zachowanie
zawartości rejestrów procesora. Po drugie, i co znacznie ważniejsze, korzystne byłoby
zachowanie zawartości pamięci buforowej cache procesora, zawierającej zapewne
wszystkie dane, które proces w tym okresie potrzebuje do kontynuacji obliczeń.

Szeregowanie wieloprocesorowe — wstęp 1



Wykorzystanie pamięci buforowej cache procesora

Pamięć buforowa cache przechowuje kopie danych pobranych
z pamięci RAM, i być może zmodyfikowanych tutaj, lub wysłanych
przez procesor do RAM.

Cache ma ograniczoną wielkość, ale jej skuteczność wynika
z zasady lokalności i zwykle zawiera wszystkie dane, z których
korzysta procesor, zapewniając super szybkie wykonywanie
instrukcji, z minimalnymi odwołaniami do pamięci RAM.

Pamięć RAM jest dużo wolniejsza, ale odwołania do niej są
rzadkie. Należy jednak pamiętać, że komórki pamięci RAM,
załadowane do cache mogą mieć w RAM nieaktualną zawartość.

W przypadku systemu wieloprocesorowego dane
pamiętane w cache jednego procesora nie mogą
być normalnie pobrane z RAM i wykorzystane
przez inny procesor, bo mogą być nieaktualne.
Procesor z pamięcią cache obserwuje magistralę
pamięci, i w przypadku zapisu do komórki, którą
posiada w swojej cache albo aktualizuje jej
zawartość, albo oznacza ją jako nieaktualną.

Szeregowanie wieloprocesorowe — cache procesora 2



Powinowactwo pamięci cache

Sytuacja zapełnienia pamięci cache procesora danymi procesu na niej obliczanemu
nazywana jest powinowactwem (affinity) procesu z procesorem, albo
alternatywnie powinowactwem pamięci cache. Powoduje ono, że w szeregowaniu
wieloprocesorowym warto uwzględniać nie tylko kwestię który proces powinien być
w danym momencie uruchomiony, ale również na którym procesorze powinien być
uruchomiony. Dokładniej, jeśli wykonywanie jakiegoś procesu ma być w kolejnym
kwancie czasu kontynuowane, to powinno być kontynuowane na tym samym procesorze.

W praktycznej realizacji strategii planowania opartej na tej zasadzie pojawia się jeszcze
jedna ważna kwestia. W systemie może istnieć jedna globalna pula (kolejka) procesów
gotowych, bądź mogą być one podzielone pomiędzy procesory i każdy procesor może
przetwarzać tylko swoją własną kolejkę gotowych.

Poniżej rozważymy oba podejścia. W tym drugim przypadku oprócz zagadnienia
początkowego przydziału procesu do kolejki jednego z procesorów, może jeszcze
pojawiać się zjawisko nierównego obciążenia procesorów.

Szeregowanie wieloprocesorowe — wykorzystanie powinowactwa 3



Szeregowanie wieloprocesorowe z pojedynczą kolejką (SQMS)

Rozważmy przykład szeregowania wieloprocesorowego z pojedynczą kolejką zadań:

Kolejne zadania są obsadzane na kolejne wolne
procesory, podobnie jak w jednoprocesorowej
metodzie RR (Round Robin), ale tu metoda
działa dokładnie wbrew powinowactwu.

Efekt: metoda kompletnie nieefektywna.

Można próbować realizować schemat zbliżony
do RR, ale usiłujący przydzielać procesy na
procesory w miarę możliwości wykorzystując
powinowactwo.
Jednak taki schemat jest trudny do uogólnienia
i do realizacji — praktycznie nie realizuje on
zasady RR, ani nie przestrzega powinowactwa.

Szeregowanie wieloprocesorowe — z pojedynczą kolejką (SQMS) 4



Szeregowanie wieloprocesorowe z wieloma kolejkami (MQMS)

Okazuje się, że rozdzielenie zbioru wszystkich zadań na kolejki przyporządkowane
procesorom pozwala rozwiązać wiele problemów. Rozważmy prosty przykład czterech
zadań podzielonych na kolejki dla dwóch procesorów:

i następujący schemat szeregowania każdego procesora metodą RR:

Jak widać, przy niezbyt dużej liczbie procesów metoda może działać bardzo dobrze.
Jest czasami możliwe powinowactwo kilku procesów z jednym procesorem naraz, jeśli
ich zbiory robocze stron pamięci zmieszczą się łącznie w pamięci cache procesora.

Nawet jeśli tak nie jest, bo procesów w lokalnej kolejce jest zbyt dużo, jest nadal
możliwe wykorzystania powinowactwa przez takie wydłużenie kwantu czasu obliczeń
pojedynczego procesu, jak jest to możliwe z punktu widzenia realizowanej strategii.

Szeregowanie wieloprocesorowe — z wieloma kolejkami (MQMS) 5



Sytuacja komplikuje się nieco, gdy wskutek kontynuacji obliczeń kolejki przypisane
różnym procesorom stają się niezrównoważone. Rozważmy sytuację po zakończeniu
procesu C:

Metoda RR nadal działa dobrze lokalnie, wykorzystując powinowactwo:

Jednak pojawił się problem nierównomierności obciążenia procesorów, i nierównego
dostępu do CPU dla procesów w różnych kolejkach.

Szeregowanie wieloprocesorowe — z wieloma kolejkami (MQMS) 6



Równoważenie obciążeń w metodzie z wieloma kolejkami

(MQMS) — migracja procesów

Sytuacja może jeszcze bardziej zdegenerować się po zakończeniu procesu A:

Na jednym procesorze nadal działa poprawnie RR, ale drugi jest kompletnie
niewykorzystany:

Rozwiązaniem problemu może być migracja procesów. Jeżeli system operacyjny
będzie nadzorował stan wszystkich kolejek, to może przenieść jeden z procesów B albo
D do kolejki CPU0, i przywrócić poprawne działanie całego schematu MQMS.

Szeregowanie wieloprocesorowe — równoważenie obciążeń w metodzie z wieloma kolejkami (MQMS) 7



Oczywiście, sytuacja nie zawsze jest tak klarowna jak w poprzednim przypadku.
Możemy również rozważyć sytuację nierównego obciążenia jak na przykład:

W tym wypadku interwencja systemu i migracja procesu/ów nie przywróci równowagi,
tylko ją zmieni na korzyść innego procesora i innej grupy procesów:

Jednak zwykle należy kontynuować taką migrację procesów, dla sukcesywnego
równoważenia obciążeń (i sprawiedliwości w przydziale CPU procesom w różnych
kolejkach), nawet kosztem okresowego naruszania powinowactwa. Zauważmy, że
w dłuższym okresie naruszenie powinowactwa nie ma większego znaczenia, ponieważ
aktualność danych pamiętanych w cache jest ogólnie krótkotrwała.

Prosty algorytm migracji procesów może polegać na podkradaniu zadań przez mało
obciążony procesor, z kolejki bardziej obciążonego procesora.

Szeregowanie wieloprocesorowe — równoważenie obciążeń w metodzie z wieloma kolejkami (MQMS) 8



Szeregowanie asymetryczne

Dotychczas omawiane przykłady ilustrowały tak zwane szeregowanie symetryczne
(Symmetric Multiprocessing, SMP). Jego zasadą jest, że wszystkie procesory zajmują
się zarówno szeregowaniem jak i wykonywaniem programów.

Istnieje jednak również inne podejście do szeregowania wieloprocesorowego, zwane
szeregowaniem asymetrycznym (Asymmetric Multiprocessing). W tej metodzie
jeden z procesorów — desygnowany jako Master — jest dedykowany do planowania
wszystkich zadań, jak również innych zadań globalnych systemu operacyjnego, jak
obsługi operacji I/O, itp. Pozostałe procesory wykonują tylko programy użytkowe.

Szeregowanie wieloprocesorowe — asymetryczne 9



Szeregowanie w architekturze NUMA

Dodatkową okolicznością w szeregowaniu wieloprocesorowym są pewne specjalne
architektury sprzętowe. W szczególności architektura wieloprocesorowa NUMA
(Non-Uniform Memory Access) stwarza takie specjalne wymagania.

W przypadku architektury NUMA ma sens takie szeregowanie procesów, aby były one
wykonywane na procesorze fizycznie bliskim blokowi pamięci, w którym przechowywane
są dane procesu. W tym wypadku bliskość modułu pamięci, i koszt transferów z i do
RAM, ma znaczenie zasadnicze. Powinowactwo pamięci cache jest nadal brane pod
uwagę, gdy już zostanie zapewnione, że wcześniejsze wykonanie danego procesu odbyło
się na „właściwym” z punktu widzenia architektury NUMA procesorze.

Szeregowanie wieloprocesorowe — asymetryczne 10



Krótkie podsumowanie — pytania sprawdzające

Odpowiedz na poniższe pytania:

1. Jak działa pamięć buforowa cache procesora? W jaki sposób wpływa ona na
przyspieszenie obliczeń?

2. W jaki sposób może dojść do niespójności zawartości cache i jak można rozwiązać
ten problem?

3. Co nazywamy powinowactwem procesora, i jaki ma ona związek z szeregowaniem
procesów?

4. Na czym polega szeregowanie symetryczne z jedną kolejką zadań SQMS, i dlaczego
ta metoda nie zawsze się sprawdza?

5. W jakich sytuacjach źle działa szeregowanie symetryczne z wieloma kolejkami zadań
MQMS, i w jaki sposób można przywrócić poprawne działanie tej metody?

6. Na czym polega asymetryczne szeregowanie wieloprocesorowe?

7. Jak można uwzględnić specyfikę architektury NUMA w szeregowaniu procesów?

Szeregowanie wieloprocesorowe — podsumowanie 11



Szeregowanie wieloprocesorowe — podsumowanie 12



Planowanie statyczne i dynamiczne

Algorytmy planowania mają na celu zapewnienie spełnienia wymagań czasowych całego
systemu. Muszą podejmować decyzje o przydzielaniu zasobów systemu biorąc pod
uwagę najgorszy możliwy przypadek, lub czas odpowiedzi. Można podzielić strategie
planowania na: planowanie przed wykonaniem, i planowanie w czasie wykonywania.

Celem planowania przed wykonaniem, albo inaczej: planowania statycznego,
jest wyznaczenie odpowiedniej kolejności wykonywania zapewniającej spełnienie
ograniczeń i bezkolizyjny dostęp do zasobów systemu. Planowanie przed wykonaniem
może również minimalizować pewne narzuty systemowe, takie jak przełączenia
kontekstu, co zwiększa szanse na wyznaczenie poprawnego porządku wykonania.

Planowanie w czasie wykonywania, inaczej: planowanie dynamiczne, polega
na przyznawaniu zadaniom priorytetów, a następnie przydzielanie zasobów zadaniom
według tych priorytetów. W tym podejściu zadania mogą generować przerwania i żądać
zasobów w dowolny sposób. Jednak aby potwierdzić poprawność pracy systemu,
konieczne są testy i symulacje, w tym stochastyczne.

Na przykład, poznana wcześniej metoda planowania priorytetowego jest metodą
planowania statycznego, a z wykorzystaniem dynamicznej modyfikacji priorytetów jest
również metodą planowania dynamicznego.

Planowanie w systemach czasu rzeczywistego — planowanie statyczne i dynamiczne 13



Zadania okresowe

W systemach czasu rzeczywistego często mamy do czynienia z zadaniami okresowymi.
Zadania takie muszą być wykonywane cyklicznie w nieskończonej pętli powtórzeń.
Ponieważ każdorazowe tworzenie, a następnie kasowanie zadania byłoby nieefektywne,
zatem system operacyjny, który wspiera zadania okresowe, po zakończeniu zadania
reinicjalizuje je, oblicza czas jego kolejnego uruchomienia (inaczej: wyzwolenia, ang.
release), i umieszcza w kolejce zadań oczekujących, a na początku kolejnego okresu
wyzwala je, tzn. umieszcza w kolejce zadań gotowych.

Możemy traktować instancje danego zadania jako oddzielne zadania, które podlegają
szeregowaniu przez system.

Tylko niektóre systemy operacyjne wspierają zadania okresowe. Mogą one być
zaimplementowane w postaci programu, który naprzemiennie wykonuje jakiś fragment
swojego kodu, i zasypia do początku następnego okresu. Przykładowe systemy
wspierające zadania okresowe: Real-Time Mach, EPIQ.

Planowanie w systemach czasu rzeczywistego — zadania okresowe 14



Szeregowanie częstotliwościowe

Często stosowaną strategią dla zadań okresowych w RTS jest szeregowanie
częstotliwościowe monotoniczne RMS (Rate Monotonic Scheduling). Metoda
polega na przypisaniu zadaniom statycznych priorytetów proporcjonalnych do ich
częstotliwości wykonywania. Zadanie o wyższej częstotliwości ma zawsze priorytet nad
zadaniem o częstotliwości niższej. Wykonujące się zadanie jest wywłaszczane gdy
uwolniona została kolejna instancja zadania o wyższej częstotliwości.

Szeregowanie częstotliwościowe RMS jest metodą szeregowania z wywłaszczaniem.

Planowanie w systemach czasu rzeczywistego — szeregowanie częstotliwościowe RMS 15



Szeregowanie częstotliwościowe (RMS) — własności

RMS jest algorytmem optymalnym pośród algorytmów z priorytetami statycznymi.
Jeśli zbiór zadań da się szeregować algorytmem z priorytetami statycznymi, to RMS
również będzie je poprawnie szeregować.

Twierdzenie (Liu): dla zestawu zadań okresowych, i planowania priorytetowego
z wywłaszczaniem, przydział priorytetów nadający wyższe priorytety zadaniom
z krótszym okresem wykonywania, daje optymalny algorytm planowania.

Planowanie w systemach czasu rzeczywistego — szeregowanie częstotliwościowe RMS 16



Szeregowanie częstotliwościowe (RMS) — własności (cd.)

Będziemy się posługiwać wartością maksymalnego wykorzystania procesora U :

U =
n∑

i=1

ei

pi

gdzie dla n zadań, ei jest czasem wykonania, a pi okresem i-tego zadania.

Twierdzenie (o kresie dla algorytmu RMS): dla dowolnego zestawu n zadań
okresowych istnieje poprawny harmonogram planowania jeśli:

U ≤ n(21/n
− 1)

Planowanie w systemach czasu rzeczywistego — szeregowanie częstotliwościowe RMS 17



Szeregowanie częstotliwościowe (RMS) — własności (cd.)

Przedstawione twierdzenie określa, że im więcej zadań, tym trudniej będzie znaleźć
harmonogram planowania wykorzystujący pełną wydajność procesora. Można obliczyć
limit teoretyczny wykorzystania procesora dla nieskończonego zestawu zadań. Wynosi
on ln 2 ≈ 0.69. Co więcej, już dla kilku zadań zbliża się on do 70%. Dokładniej:

n zadań 1 2 3 4 5 6 ... ∞

kres RMS 1.0 0.83 0.78 0.76 0.74 0.73 ... 0.69

Strategia RMS pozwala zapewnić teoretyczną gwarancję, że system będzie w stanie
wykonywać wszystkie zadania zgodnie z ich okresami, a gdyby nie było to pewne dla
danego zestawu zadań, to jaka dodatkowa moc procesora jest potrzebna aby tę
gwarancję uzyskać.

Warunek szeregowalności podany w twierdzeniu nie jest jedynym znanym warunkiem
wystarczającym szeregowalności algorytmem RMS. Istnieją również inne warunki
wystarczające, gwarantujące szeregowalność RMS dla zestawów zadań spełniających
dodatkowe założenia, przy wyższym limicie wykorzystania procesora. Na przykład, gdy
okresy każdej pary zbioru zadań mają relację harmoniczną (jeden jest wielokrotnością
drugiego), to taki zestaw zadań jest szeregowalny algorytmem RMS do U = 100%.

Planowanie w systemach czasu rzeczywistego — szeregowanie częstotliwościowe RMS 18



Szeregowanie częstotliwościowe (RMS) — własności (cd.)

RMS nie jest strategią globalnie optymalną. Określony w twierdzeniu warunek jest
tylko warunkiem wystarczającym, ale nie jest warunkiem koniecznym realizowalności
danego zestawu zadań.

Pomimo podanego teoretycznego limitu szeregowalności algorytm RMS jest
prawdopodobnie najpopularniejszym algorytmem szeregowania stosowanym
w systemach czasu rzeczywistego. Składa się na to bardzo prosta implementacja, oraz
brak dodatkowych założeń dla zestawu zadań (takich jak w algorytmie EDF), których
nie wspiera wiele systemów operacyjnych czasu rzeczywistego.

W wielu przypadkach jest również możliwe planowanie algorytmem RMS zestawu
zadań przekraczających limit teoretyczny wykorzystania procesora. Złożone systemy
czasu rzeczywistego osiągają często wykorzystanie procesora rzędu 80% bez większych
problemów. Dla losowo wygenerowanego zestawu zadań okresowych, poprawne
szeregowanie jest możliwe do wartości około 85%, ale bez żadnych gwarancji (niektórzy
autorzy podają wartość 88%).

Zauważmy ponadto, że jeśli uruchomione zadania okresowe wykorzystują mniej niż
U = 100% procesora, to można w takim systemie uruchomić dodatkowe zadania,
niedziałające w czasie rzeczywistym, które mogą wykorzystać pozostałą moc procesora.

Planowanie w systemach czasu rzeczywistego — szeregowanie częstotliwościowe RMS 19



Planowanie RMS — przykład

Planowanie w systemach czasu rzeczywistego — szeregowanie częstotliwościowe RMS 20



Szeregowanie terminowe EDF

Istotą przetwarzania w RTOS jest aby określone zdarzenia występowały w określonym
czasie. Jeśli zdefiniujemy czas rozpoczęcia i pożądany czas zakończenia wszystkich
zadań, to system może obliczyć właściwe szeregowanie zapewniające spełnienie
wszystkich ograniczeń. Ważna, często stosowana taka metoda jest nazywana
szeregowaniem terminowym (deadline scheduling). Stosowana jest skrótowa
nazwa tego algorytmu EDF (earliest deadline first).

czas uwolnienia czas wykonania termin zakończenia
τ1 0 8 20
τ2 3 2 5
τ3 5 3 10

Szeregowanie terminowe bierze pod uwagę termin zakończenia wszystkich zadań
określony względem czasu ich rozpoczęcia. Dla zadań okresowych typowym terminem
zakończenia instancji zadania jest moment czasowy uwolnienia następnej jego instancji.

Algorytm jest bardzo intuicyjny, ponieważ ludzie często podejmują decyzje w podobny
sposób. Człowiek, który jest obciążony dużą liczbą zadań, do tego stopnia, że nie wie
za co się zabrać najpierw, często zabiera się za zadanie, którego wymagany termin
wykonania jest najwcześniejszy.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 21



Szeregowanie terminowe dla zadań okresowych

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 22



Szeregowanie terminowe dla zadań okresowych — własności

Algorytm szeregowania terminowego EDF dla pojedynczego procesora i zadań
okresowych z wywłaszczaniem jest optymalny w takim sensie, że jeśli dany zbiór zadań,
każde z określonym okresem, czasem uwolnienia, czasem obliczeń, i terminem
zakończenia, jest szeregowalny jakimkolwiek algorytmem zapewniającym dotrzymanie
terminów, to EDF również będzie poprawnie szeregować ten zbiór zadań.

Co więcej, można sformułować następujące:

Twierdzenie (o kresie dla algorytmu EDF): zestaw n zadań okresowych, których
czasy uwolnienia przypadają na początek okresów a terminy wykonania są równe
końcom ich okresów, będzie poprawnie planowany algorytmem EDF jeśli:

n∑

i=1

ei

pi
≤ 1

Warunek szeregowalności do 100% wykorzystania procesora stanowi istotną przewagę
algorytmu EDF nad RMS. Jednak gdy system staje się przeciążony to nie jest możliwe
wyznaczenie zadania, które przekroczy swój termin (bo zależy to od konkretnego
rozkładu terminów zadań, oraz momentu, w którym wystąpi przeciążenie). Stanowi to
główną wadę tego algorytmu, w porównaniu z RMS.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 23



Szeregowanie terminowe — przypadki szczególne

Typowym przypadkiem szeregowania terminowego dla zadań okresowych jest gdy
terminy zadań przypadają na koniec okresu. Nie zawsze musi to być właściwe. Dany
system może wymagać by pewne zadania były ukończone w określonym momencie,
przed końcem ich okresu. Jednak wtedy nie obowiązuje gwarancja szeregowalności do
limitu wykorzystania procesora U = 100%.

Rozważmy następujący przykład szeregowania czterech zadań okresowych (źródło:
Wikipedia). Zadania są określone przez trzy parametry: czas obliczeń jednej instancji,
względny termin wykonania w ramach okresu, i okres zadania. W tym przykładzie
łączne wykorzystanie procesora U = 5/20 + 3/11 + 4/10 + 1/20 ≈ 0.97%, jednak ten
zestaw zadań nie jest szeregowalny algorytmem EDF.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 24



Szeregowanie terminowe — procesy nieokresowe

W przypadku gdy zestaw zadań nie ma stałego, okresowego charakteru, metody
planowania przed wykonaniem nie mają zastosowania. Planowanie w czasie wykonania,
inaczej planowanie dynamiczne, musi brać pod uwagę wszystkie ograniczenia aktualnie
istniejących zadań. Możemy wtedy również zastosować algorytm EDF.

Rozważmy przykład:

Zadanie T1 jest jedyne w chwili 0, więc jest natychmiast uruchamiane. W chwili 4
pojawia się zadanie T2 z wcześniejszym terminem, więc T1 zostaje wywłaszczone.
W chwili 5 pojawia się zadanie T3 z późniejszym terminem, więc wywłaszczenia nie
ma. Zadanie T2 wykonuje się do końca, potem T3 i ostatnie wznawiane jest T1.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 25



Algorytm EDF dla zadań nieokresowych — podsumowanie

Algorytm EDF jest optymalny dla pojedynczego procesora z wywłaszczaniem. Inaczej
można powiedzieć, że jeśli istnieje poprawny harmonogram wykonania zestawu zadań
zgodnego z ich terminami, to EDF będzie działał poprawnie.

Jednak w przypadku szeregowania bez wywłaszczania EDF nie jest optymalny.
Dlatego traktujemy EDF jako algorytm szeregowania z wywłaszczaniem.

EDF również nie jest optymalny dla szeregowania z więcej niż jednym procesorem!

Przykład: przedstawiony po prawej zestaw zadań
nieokresowych jest szeregowalny dla dwóch procesorów,
lecz EDF doprowadzi T3 do przekroczenia terminu.

wyzw. czas termin

T1 0 1 1

T2 0 1 2

T3 0 5 5

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 26



Krótkie podsumowanie — pytania sprawdzające

1. Jakie strategie szeregowania stosowane są w systemach czasu rzeczywistego?
Wymień te właściwe dla zadań okresowych i nieokresowych?

2. Które strategie szeregowania czasu rzeczywistego wymagają wywłaszczania?

3. Kiedy strategia szeregowania może być stosowana bez wywłaszczania?

4. Przeanalizuj pracę algorytmu RMS dla dwóch zadań z parametrami: E1 = 25,
P1 = 50, E2 = 30, P2 = 75. Przedstaw wynik na diagramie czasowym. Jak ma się
uzyskany wynik do podanego wyżej warunku teoretycznego szeregowalności zbioru
zadań?

5. Zastosuj do przykładowych zadań z poprzedniego pytania algorytm EDF z czasami
uwolnienia zadań równymi początkom ich okresów, i terminami zakończenia
równymi końcom okresów. Wynik przedstaw na diagramie czasowym.

Planowanie w systemach czasu rzeczywistego — podsumowanie 27


