Szeregowanie wieloprocesorowe — wstep

Na pozor mozna zrealizowac szeregowanie w systemach wieloprocesorowych tymi
samymi metodami co w systemach jednoprocesorowych. To znaczy, w przypadku
szeregowania zdarzeniowego mozna zdarzenia wyzwalajace prace planisty i decyzje

o rozpoczeciu wykonywania kolejno wybranego procesu odnies¢ do wszystkich
procesorow. Za kazdym razem kiedy zwolni sie jeden z procesorow, planista
wyznaczatby kolejne zadanie do uruchomienia na tym procesorze, a w przypadku
planowania z wywtaszczaniem, za kazdym razem gdyby pojawito sie nowe zadanie,
planista sprawdzatby czy ktoregos z zadan obliczanych na wszystkich procesorach nie
nalezatoby wywtaszczyc.

Podobnie w przypadku planowania okresowego, jak Round Robin, mozna te metode
rozszerzy¢ na przypadek wielu procesoréw i — po uptynieciu kolejnego kwantu czasu
dla kazdego z procesoréw — uruchamiac na nim kolejne zadania z kolejki gotowych.

Jednak to podejscie jest z pewnych wzgleddéw zwykle nieoptymalne. Gdyby to samo
zadanie miato by¢ ponownie wykonywane w kolejnym kwancie czasu, to bardzo
korzystna bytaby kontynuacja jego wykonywania na tym samym procesorze, po
pierwsze ze wzgledu na brak koniecznosci przefaczenia kontekstu, czyli zachowanie
zawartosci rejestréw procesora. Po drugie, i co znacznie wazniejsze, korzystne bytoby
zachowanie zawartosci pamieci buforowej cache procesora, zawierajgcej zapewne
wszystkie dane, ktore proces w tym okresie potrzebuje do kontynuacji obliczen.

Szeregowanie wieloprocesorowe — wstep

Wykorzystanie pamieci buforowej cache procesora

Pamie¢ buforowa cache przechowuje kopie danych pobranych
z pamieci RAM, i by¢ moze zmodyfikowanych tutaj, lub wystanych
CPU przez procesor do RAM.

Cache ma ograniczong wielkos¢, ale jej skutecznosc wynika
z zasady lokalnosci i zwykle zawiera wszystkie dane, z ktérych

Cache . . .
korzysta procesor, zapewniajac super szybkie wykonywanie
instrukcji, z minimalnymi odwotaniami do pamieci RAM.

Memory Pamie¢ RAM jest duzo wolniejsza, ale odwotania do niej s3

rzadkie. Nalezy jednak pamietac, ze komorki pamieci RAM,
zatadowane do cache moga mie¢ w RAM nieaktualng zawartosc.

W przypadku systemu wieloprocesorowego dane
pamietane w cache jednego procesora nie moga CPUO CPU 1
by¢ normalnie pobrane z RAM i wykorzystane

przez inny procesor, bo moga byc nieaktualne. f; D’ f; D

Procesor z pamieciag cache obserwuje magistrale Bue
pamieci, i w przypadku zapisu do komorki, ktéra

posiada w swojej cache albo aktualizuje jej D Memory
zawartosc, albo oznacza j3 jako nieaktualna. o 1 2 3

Szeregowanie wieloprocesorowe — cache procesora

Powinowactwo pamieci cache

Sytuacja zapetnienia pamieci cache procesora danymi procesu na niej obliczanemu
nazywana jest powinowactwem (affinity) procesu z procesorem, albo
alternatywnie powinowactwem pamieci cache. Powoduje ono, ze w szeregowaniu
wieloprocesorowym warto uwzglednia¢ nie tylko kwestie ktéry proces powinien byc¢

w danym momencie uruchomiony, ale rowniez na ktorym procesorze powinien by¢
uruchomiony. Doktadniej, jesli wykonywanie jakiegos procesu ma by¢ w kolejnym
kwancie czasu kontynuowane, to powinno by¢ kontynuowane na tym samym procesorze.

W praktycznej realizacji strategii planowania opartej na tej zasadzie pojawia sie jeszcze
jedna wazna kwestia. W systemie moze istnie¢ jedna globalna pula (kolejka) proceséw
gotowych, badz moga byc one podzielone pomiedzy procesory i kazdy procesor moze
przetwarzac tylko swojg wtasng kolejke gotowych.

Ponizej rozwazymy oba podejscia. W tym drugim przypadku oprécz zagadnienia
poczatkowego przydziatu procesu do kolejki jednego z procesorow, moze jeszcze
pojawiac sie zjawisko nierownego obcigzenia procesoréw.

Szeregowanie wieloprocesorowe — wykorzystanie powinowactwa 3

Szeregowanie wieloprocesorowe z pojedynczg kolejka (SQMS)

Rozwazmy przyktad szeregowania wieloprocesorowego z pojedyncza kolejka zadan:

CPUO
CPUT
CPU2
CPU3

CPUO
CPU1
CPU2
CPU3

A|lE|D|C|B
B|A|E|D|C
C|{B|A|E|D
DIC|B|A|E
AlE[A[A|A
B|B|E|[B|B
C|C|{C|E|C
D/ D|{D|D|E

Kolejne zadania s3 obsadzane na kolejne wolne
procesory, podobnie jak w jednoprocesorowe;j
metodzie RR (Round Robin), ale tu metoda
dziata dokfadnie wbrew powinowactwu.

Efekt: metoda kompletnie nieefektywna.

Mozna prébowaé realizowac schemat zblizony
do RR, ale usitujacy przydziela procesy na
procesory w miare mozliwosci wykorzystujac
powinowactwo.

Jednak taki schemat jest trudny do uogdlnienia
i do realizacji — praktycznie nie realizuje on
zasady RR, ani nie przestrzega powinowactwa.

Szeregowanie wieloprocesorowe — z pojedyncza kolejka (SQMS)

Szeregowanie wieloprocesorowe z wieloma kolejkami (MQMS)

Okazuje sie, ze rozdzielenie zbioru wszystkich zadan na kolejki przyporzadkowane
procesorom pozwala rozwigzac wiele probleméw. Rozwazmy prosty przyktad czterech
zadan podzielonych na kolejki dla dwéch procesoréw:

Q0 Q1 —@

| nastepujacy schemat szeregowania kazdego procesora metoda RR:

CPUO fAJA|C|C|]AIA|C|C|AJA|C|C

cPrut 1B B|D|D|B|B|D|D|B|B|D|D

Jak widac, przy niezbyt duzej liczbie procesow metoda moze dziataé bardzo dobrze.
Jest czasami mozliwe powinowactwo kilku proceséw z jednym procesorem naraz, jesli
ich zbiory robocze stron pamieci zmieszcza sie tacznie w pamieci cache procesora.

Nawet jesli tak nie jest, bo procesow w lokalnej kolejce jest zbyt duzo, jest nadal
mozliwe wykorzystania powinowactwa przez takie wydtuzenie kwantu czasu obliczen
pojedynczego procesu, jak jest to mozliwe z punktu widzenia realizowanej strategii.

Szeregowanie wieloprocesorowe — z wieloma kolejkami (MQMS) 5

Sytuacja komplikuje sie nieco, gdy wskutek kontynuacji obliczen kolejki przypisane
roznym procesorom staja sie niezrbwnowazone. Rozwazmy sytuacje po zakonczeniu

procesu C:

QOH@

CPUO
CPUT

QT —>@

Metoda RR nadal dziata dobrze lokalnie, wykorzystujac powinowactwo:

A

A

A

A

A

A

A

A

A

A

B

B

D

D

B

B

D

D

B

B

D

D

Jednak pojawit sie problem nierownomiernosci obcigzenia procesoréw, i nieréwnego
dostepu do CPU dla procesow w réznych kolejkach.

Szeregowanie wieloprocesorowe — z wieloma kolejkami (MQMS)

Rownowazenie obcigzen w metodzie z wieloma kolejkami
(MQMS) — migracja proceséw

Sytuacja moze jeszcze bardziej zdegenerowal sie po zakonczeniu procesu A:

0 —> a1 —@—®)

Na jednym procesorze nadal dziata poprawnie RR, ale drugi jest kompletnie
niewykorzystany:

CPUO
ckUT | B|B|D|D|B|B|D|D|B|B|D|D

Rozwigzaniem problemu moze by¢ migracja procesow. Jezeli system operacyjny
bedzie nadzorowat stan wszystkich kolejek, to moze przenies¢ jeden z procesow B albo
D do kolejki CPUQ, i przywréci¢ poprawne dziatanie catego schematu MQMS.

Szeregowanie wieloprocesorowe — réwnowazenie obcigzen w metodzie z wieloma kolejkami (MQMS) 7

Oczywiscie, sytuacja nie zawsze jest tak klarowna jak w poprzednim przypadku.
Mozemy rowniez rozwazy¢ sytuacje nierdwnego obcigzenia jak na przyktad:

QO 4*@ Q1 —)@

W tym wypadku interwencja systemu i migracja procesu/éw nie przywrdci réwnowagi,
tylko ja zmieni na korzysc¢ innego procesora i innej grupy procesow:

cPuO | A|A|A|A|B|A|B|A|B|B|B|B

CPrUlT |B|D|B|D|D|D|D|D|A|D|A|D

Jednak zwykle nalezy kontynuowac taka migracje procesow, dla sukcesywnego
rébwnowazenia obcigzen (i sprawiedliwoséci w przydziale CPU procesom w réznych
kolejkach), nawet kosztem okresowego naruszania powinowactwa. Zauwazmy, ze

w dfuzszym okresie naruszenie powinowactwa nie ma wiekszego znaczenia, poniewaz
aktualnos¢ danych pamietanych w cache jest ogdlnie krotkotrwata.

Prosty algorytm migracji procesow moze polega¢ na podkradaniu zadan przez mato
obcigzony procesor, z kolejki bardziej obcigzonego procesora.

Szeregowanie wieloprocesorowe — réwnowazenie obcigzen w metodzie z wieloma kolejkami (MQMS) 8

Szeregowanie asymetryczne

Dotychczas omawiane przyktady ilustrowaty tak zwane szeregowanie symetryczne
(Symmetric Multiprocessing, SMP). Jego zasada jest, ze wszystkie procesory zajmuja
sie zaréwno szeregowaniem jak i wykonywaniem programow.

Istnieje jednak rowniez inne podejscie do szeregowania wieloprocesorowego, zwane
szeregowaniem asymetrycznym (Asymmetric Multiprocessing). W tej metodzie
jeden z procesoréw — desygnowany jako Master — jest dedykowany do planowania
wszystkich zadan, jak rowniez innych zadan globalnych systemu operacyjnego, jak
obstugi operacji 1/0, itp. Pozostate procesory wykonuja tylko programy uzytkowe.

Szeregowanie wieloprocesorowe — asymetryczne

Szeregowanie w architekturze NUMA

Dodatkowa okolicznoscia w szeregowaniu wieloprocesorowym s3 pewne specjalne
architektury sprzetowe. W szczegdlnosci architektura wieloprocesorowa NUMA
(Non-Uniform Memory Access) stwarza takie specjalne wymagania.

Uniform Memory Access (UMA) Non-Uniform Memory Access ([NUMA)

W przypadku architektury NUMA ma sens takie szeregowanie procesow, aby byty one
wykonywane na procesorze fizycznie bliskim blokowi pamieci, w ktorym przechowywane
sg dane procesu. W tym wypadku bliskos¢ modutu pamieci, i koszt transferéw z i do
RAM, ma znaczenie zasadnicze. Powinowactwo pamieci cache jest nadal brane pod
uwage, gdy juz zostanie zapewnione, ze wczesSniejsze wykonanie danego procesu odbyto
sie na ,wtasciwym” z punktu widzenia architektury NUMA procesorze.

Szeregowanie wieloprocesorowe — asymetryczne 10

Krotkie podsumowanie — pytania sprawdzajace

Odpowiedz na ponizsze pytania:

1.

Jak dziata pamiec¢ buforowa cache procesora? W jaki sposob wptywa ona na
przyspieszenie obliczen?

. W jaki sposdb moze dojs¢ do niespojnosci zawartosci cache i jak mozna rozwigzac

ten problem?

Co nazywamy powinowactwem procesora, i jaki ma ona zwigzek z szeregowaniem
procesow?

Na czym polega szeregowanie symetryczne z jedng kolejka zadan SQMS, i dlaczego
ta metoda nie zawsze sie sprawdza?

. W jakich sytuacjach zle dziata szeregowanie symetryczne z wieloma kolejkami zadan

MQMS, i w jaki sposéb mozna przywréci¢ poprawne dziatanie tej metody?

Na czym polega asymetryczne szeregowanie wieloprocesorowe?

. Jak mozna uwzglednic specyfike architektury NUMA w szeregowaniu procesow?

Szeregowanie wieloprocesorowe — podsumowanie 11

Szeregowanie wieloprocesorowe — podsumowanie

12

Planowanie statyczne i dynamiczne

Algorytmy planowania majg na celu zapewnienie spefnienia wymagan czasowych catego
systemu. Muszg podejmowac decyzje o przydzielaniu zasobéw systemu biorgc pod
uwage najgorszy mozliwy przypadek, lub czas odpowiedzi. Mozna podzielic strategie
planowania na: planowanie przed wykonaniem, i planowanie w czasie wykonywania.

Celem planowania przed wykonaniem, albo inaczej: planowania statycznego,
jest wyznaczenie odpowiedniej kolejnosci wykonywania zapewniajacej spetnienie
ograniczen i bezkolizyjny dostep do zasobow systemu. Planowanie przed wykonaniem
moze rowniez minimalizowaC pewne narzuty systemowe, takie jak przetaczenia
kontekstu, co zwieksza szanse na wyznaczenie poprawnego porzadku wykonania.

Planowanie w czasie wykonywania, inaczej: planowanie dynamiczne, polega
na przyznawaniu zadaniom priorytetow, a nastepnie przydzielanie zasobéw zadaniom
wedfug tych priorytetéow. W tym podejsciu zadania moga generowac przerwania i zadaé
zasobow w dowolny sposob. Jednak aby potwierdzic poprawnosé pracy systemu,
konieczne s3 testy i symulacje, w tym stochastyczne.

Na przykfad, poznana wczesniej metoda planowania priorytetowego jest metoda
planowania statycznego, a z wykorzystaniem dynamicznej modyfikacji priorytetow jest
rowniez metoda planowania dynamicznego.

Planowanie w systemach czasu rzeczywistego — planowanie statyczne i dynamiczne 13

Zadania okresowe

W systemach czasu rzeczywistego czesto mamy do czynienia z zadaniami okresowymi.
/adania takie musza by¢ wykonywane cyklicznie w nieskonczonej petli powtérzen.
Poniewaz kazdorazowe tworzenie, a nastepnie kasowanie zadania bytoby nieefektywne,
zatem system operacyjny, ktory wspiera zadania okresowe, po zakonczeniu zadania
reinicjalizuje je, oblicza czas jego kolejnego uruchomienia (inaczej: wyzwolenia, ang.
release), i umieszcza w kolejce zadan oczekujacych, a na poczatku kolejnego okresu
wyzwala je, tzn. umieszcza w kolejce zadan gotowych.

- Cycle 1 P Cycle 2 -
P Processing Idle Processing
R e Time
task P execution time >
- task P period T———p»

Mozemy traktowac instancje danego zadania jako oddzielne zadania, ktére podlegaja
szeregowaniu przez system.

Tylko niektore systemy operacyjne wspieraja zadania okresowe. Moga one byc¢
zaimplementowane w postaci programu, ktéry naprzemiennie wykonuje jakis fragment
swojego kodu, i zasypia do poczatku nastepnego okresu. Przyktadowe systemy
wspierajace zadania okresowe: Real-Time Mach, EPIQ.

Planowanie w systemach czasu rzeczywistego — zadania okresowe 14

Szeregowanie czestotliwoSciowe

Czesto stosowang strategia dla zadan okresowych w RTS jest szeregowanie
czestotliwo$ciowe monotoniczne RMS (Rate Monotonic Scheduling). Metoda
polega na przypisaniu zadaniom statycznych priorytetéw proporcjonalnych do ich
czestotliwosci wykonywania. Zadanie o wyzszej czestotliwosci ma zawsze priorytet nad
zadaniem o czestotliwosci nizszej. Wykonujace sie zadanie jest wywfaszczane gdy
uwolniona zostata kolejna instancja zadania o wyzszej czestotliwosci.

High
A

Priority.

=~

Highest rate and
highest priority task

&
-~
-
f-qa‘—\ Lowest rate and

lowest priority task

Szeregowanie czestotliwosciowe RMS jest metoda szeregowania z wywtaszczaniem.

Planowanie w systemach czasu rzeczywistego — szeregowanie czestotliwo$ciowe RMS 15

Szeregowanie czestotliwosciowe (RMS) — wtasnosci

RMS jest algorytmem optymalnym posrdod algorytméw z priorytetami statycznymi.
Jesli zbior zadan da sie szeregowac algorytmem z priorytetami statycznymi, to RMS
rowniez bedzie je poprawnie szeregowac.

Twierdzenie (Liu): dla zestawu zadan okresowych, i planowania priorytetowego
z wywitaszczaniem, przydziat priorytetow nadajacy wyzsze priorytety zadaniom
z krotszym okresem wykonywania, daje optymalny algorytm planowania.

Planowanie w systemach czasu rzeczywistego — szeregowanie czestotliwosciowe RMS

16

Szeregowanie czestotliwoSciowe (RMS) — wtasnosci (cd.)

Bedziemy sie postugiwacC wartoscia maksymalnego wykorzystania procesora U':

U=33
=1 P

gdzie dla n zadan, ¢; jest czasem wykonania, a p; okresem i-tego zadania.

Twierdzenie (o kresie dla algorytmu RMS): dla dowolnego zestawu n zadan
okresowych istnieje poprawny harmonogram planowania jesli:

U <n@Y"—1)

Planowanie w systemach czasu rzeczywistego — szeregowanie czestotliwosciowe RMS 17

Szeregowanie czestotliwoSciowe (RMS) — wtasnosci (cd.)

Przedstawione twierdzenie okresla, ze im wiecej zadan, tym trudniej bedzie znalez¢
harmonogram planowania wykorzystujacy petna wydajno$é procesora. Mozna obliczy¢
limit teoretyczny wykorzystania procesora dla nieskonczonego zestawu zadan. Wynosi
on In2 =~ 0.69. Co wiecej, juz dla kilku zadan zbliza sie on do 70%. Doktadnie;:

n zadan 1 2 3 4 5 § 00
kres RMS | 1.0 1083 | 0.78 | 0.76 | 0.74 | 0.73 | ... | 0.69

Strategia RMS pozwala zapewnic teoretyczng gwarancje, ze system bedzie w stanie
wykonywac wszystkie zadania zgodnie z ich okresami, a gdyby nie byto to pewne dla
danego zestawu zadan, to jaka dodatkowa moc procesora jest potrzebna aby te
gwarancje uzyskac.

Warunek szeregowalnosci podany w twierdzeniu nie jest jedynym znanym warunkiem
wystarczajacym szeregowalnosci algorytmem RMS. Istniejg réwniez inne warunki
wystarczajace, gwarantujace szeregowalnos¢ RMS dla zestawéw zadan spetniajacych
dodatkowe zatozenia, przy wyzszym limicie wykorzystania procesora. Na przyktad, gdy
okresy kazdej pary zbioru zadan maja relacje harmoniczna (jeden jest wielokrotnoscia
drugiego), to taki zestaw zadan jest szeregowalny algorytmem RMS do U = 100%.

Planowanie w systemach czasu rzeczywistego — szeregowanie czestotliwo$ciowe RMS 18

Szeregowanie czestotliwoSciowe (RMS) — wtasnosci (cd.)

RMS nie jest strategig globalnie optymalng. Okreslony w twierdzeniu warunek jest
tylko warunkiem wystarczajacym, ale nie jest warunkiem koniecznym realizowalnosci
danego zestawu zadan.

Pomimo podanego teoretycznego limitu szeregowalnosci algorytm RMS jest
prawdopodobnie najpopularniejszym algorytmem szeregowania stosowanym

w systemach czasu rzeczywistego. Skfada sie na to bardzo prosta implementacja, oraz
brak dodatkowych zatozen dla zestawu zadan (takich jak w algorytmie EDF), ktérych
nie wspiera wiele systemow operacyjnych czasu rzeczywistego.

W wielu przypadkach jest réwniez mozliwe planowanie algorytmem RMS zestawu
zadan przekraczajacych limit teoretyczny wykorzystania procesora. Ztozone systemy
czasu rzeczywistego osiagaja czesto wykorzystanie procesora rzedu 80% bez wiekszych
probleméw. Dla losowo wygenerowanego zestawu zadan okresowych, poprawne
szeregowanie jest mozliwe do wartosci okoto 85%, ale bez zadnych gwarancji (niektérzy
autorzy podaja wartosé 88%).

Zauwazmy ponadto, ze jesli uruchomione zadania okresowe wykorzystuja mniej niz
U = 100% procesora, to mozna w takim systemie uruchomié¢ dodatkowe zadania,
niedziatajgce w czasie rzeczywistym, ktére moga wykorzysta¢ pozostata moc procesora.

Planowanie w systemach czasu rzeczywistego — szeregowanie czestotliwo$ciowe RMS 19

Planowanie RMS — przyktad

T; é pi w; =¢;/p;
T| 1 -+ 0.25
02 2 5 0.4
73 5 20 0.25

T4 To T3

H
\
V7474
NN
7
\
7
5 BN
NN

20

Planowanie w systemach czasu rzeczywistego — szeregowanie czestotliwo$ciowe RMS

Szeregowanie terminowe EDF

Istotg przetwarzania w RTQOS jest aby okreSlone zdarzenia wystepowaty w okreslonym
czasie. Jesli zdefiniujemy czas rozpoczecia i pozadany czas zakonczenia wszystkich
zadan, to system moze obliczyC wtasciwe szeregowanie zapewniajgce spetnienie
wszystkich ograniczen. Wazna, czesto stosowana taka metoda jest nazywana
szeregowaniem terminowym (deadline scheduling). Stosowana jest skrétowa
nazwa tego algorytmu EDF (earliest deadline first).

czas uwolnienia | czas wykonania | termin zakonczenia
Ti 0 8 20
T9 3 2 5
T3 5 3 10

Szeregowanie terminowe bierze pod uwage termin zakonczenia wszystkich zadan
okreslony wzgledem czasu ich rozpoczecia. Dla zadan okresowych typowym terminem
zakonczenia instancji zadania jest moment czasowy uwolnienia nastepnej jego instancji.

Algorytm jest bardzo intuicyjny, poniewaz ludzie czesto podejmuja decyzje w podobny
sposob. Cztowiek, ktory jest obcigzony duza liczba zadan, do tego stopnia, ze nie wie
za co sie zabraC najpierw, czesto zabiera sie za zadanie, ktorego wymagany termin
wykonania jest najwczesniejszy.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 21

Szeregowanie terminowe dla zadan okresowych

Process Arrival Time Execuation Time Ending Deadline
A(D) 0 10 20
A(D) 20 10 40
A(3) 40 10 60
A4 60 10 g0
A(S) 80 10 100
B(1) 0 25 50
B(2) 50 25 100
Bi B2
deadline deadline
Al A2 Al Ad AS
deadline deadline deadline deadline deadline
: : v : Yy v v : v : i
Arrival times, execution Al | A2 | Al Ad | A5 | :
times, and deadlines 'B1 ! | : B2 ¢ | . . >
!] :.D 3:0 3.[' 4.0 ."'::l] 6.0 'Ill] S.ﬂ ‘.5!1] l!][l Time(ms)
Fixed-priority scheduling; AT[BI|A2Z[BI| AS|[BZ | Ad[B2 | A5 [B] . -
A has priority : ' I ' I I I ' I ' I
' ' 1 2 1 i 4 . ASB2
: : : : , (migsed) | : : : :
Fixed-priority scheduling; [Bl « | A2] [A3 B2 + | | A5 | ; -
B has priority ' : A . A T A : 4 : T
E E J"LI. E a-J l.,l. ;-;3 E J"L4 E .-'15:. BI
1] {mliEﬁd}l] 1] 1] l[mlssed}] 1
Earliest deadline scheduling AT BI [A2 BI | A3 B2 Ad B2 AS
using com pletion deadlines : : T : T f T : ? : »
B1 %3 ' %4 ' .-'h..'!. B2

: , ' e e A
Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe £DF

22

Szeregowanie terminowe dla zadan okresowych — wtasnosci

Algorytm szeregowania terminowego EDF dla pojedynczego procesora i zadan
okresowych z wywtaszczaniem jest optymalny w takim sensie, ze jesli dany zbior zadan,
kazde z okreSlonym okresem, czasem uwolnienia, czasem obliczen, i terminem
zakonczenia, jest szeregowalny jakimkolwiek algorytmem zapewniajagcym dotrzymanie
terminow, to EDF réwniez bedzie poprawnie szeregowac ten zbior zadan.

Co wiecej, mozna sformutowaé nastepujace:

Twierdzenie (o kresie dla algorytmu EDF): zestaw n zadan okresowych, ktérych
czasy uwolnienia przypadaja na poczatek okreséw a terminy wykonania sg rowne
koncom ich okreséw, bedzie poprawnie planowany algorytmem EDF jesli:

n €;
> — <1
=1 D;

Warunek szeregowalnosci do 100% wykorzystania procesora stanowi istotng przewage
algorytmu EDF nad RMS. Jednak gdy system staje sie przecigzony to nie jest mozliwe
wyznaczenie zadania, ktore przekroczy swoj termin (bo zalezy to od konkretnego
rozktadu terminéw zadan, oraz momentu, w ktérym wystapi przeciazenie). Stanowi to
gtéwna wade tego algorytmu, w poréwnaniu z RMS.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 23

Szeregowanie terminowe — przypadki szczegoélne

Typowym przypadkiem szeregowania terminowego dla zadan okresowych jest gdy
terminy zadan przypadajg na koniec okresu. Nie zawsze musi to by¢ wtasciwe. Dany
system moze wymagac by pewne zadania byty ukonczone w okreslonym momencie,
przed koncem ich okresu. Jednak wtedy nie obowigzuje gwarancja szeregowalnosci do
limitu wykorzystania procesora U = 100%.

Rozwazmy nastepujacy przyktad szeregowania czterech zadan okresowych (zrédto:
Wikipedia). Zadania sg okreslone przez trzy parametry: czas obliczen jednej instancji,
wzgledny termin wykonania w ramach okresu, i okres zadania. W tym przyktadzie

taczne wykorzystanie procesora U = 5/20 + 3/11 +4/10 + 1/20 =~ 0.97%, jednak ten
zestaw zadan nie jest szeregowalny algorytmem EDF.

TaskNo(computation time, relative deadline, period)
T0(5,13,20)
T1(3,7,11)
T2(4,6,10)
T3(1,1,20)
Time Out
EDF Scheduling |

CPU unittimeindex 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 24

Szeregowanie terminowe — procesy nieokresowe

W przypadku gdy zestaw zadan nie ma statego, okresowego charakteru, metody

planowania przed wykonaniem nie majg zastosowania. Planowanie w czasie wykonania,
inaczej planowanie dynamiczne, musi bra¢ pod uwage wszystkie ograniczenia aktualnie

istniejacych zadan. Mozemy wtedy rowniez zastosowac algorytm EDF.

Rozwazmy przykfad:

arrival duration | deadline
TI 0 10 33
Task arrivals i 4 3 28
Al 2
V ;| 5 10 29

Zadanie T} jest jedyne w chwili 0, wiec jest natychmiast uruchamiane. W chwili 4
pojawia sie zadanie 715 z wczesniejszym terminem, wiec 17 zostaje wywtaszczone.
W chwili 5 pojawia sie zadanie T3 z pdzniejszym terminem, wiec wywfaszczenia nie
ma. Zadanie 15 wykonuje sie do konca, potem 73 i ostatnie wznawiane jest 7.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF

25

Algorytm EDF dla zadan nieokresowych — podsumowanie

Algorytm EDF jest optymalny dla pojedynczego procesora z wywtaszczaniem. Inaczej
mozna powiedzie¢, ze jesli istnieje poprawny harmonogram wykonania zestawu zadan
zgodnego z ich terminami, to EDF bedzie dziatat poprawnie.

Jednak w przypadku szeregowania bez wywtaszczania EDF nie jest optymalny.
Dlatego traktujemy EDF jako algorytm szeregowania z wywtaszczaniem.

EDF réwniez nie jest optymalny dla szeregowania z wiecej niz jednym procesorem!

wyzw. | czas | termin
11 0 1 1
T 0 1 2
T3 0 5 5

Przyktad: przedstawiony po prawej zestaw zadan
nieokresowych jest szeregowalny dla dwéch procesoréw,
lecz EDF doprowadzi T3 do przekroczenia terminu.

Planowanie w systemach czasu rzeczywistego — szeregowanie terminowe EDF 26

Krotkie podsumowanie — pytania sprawdzajace

1. Jakie strategie szeregowania stosowane s3 w systemach czasu rzeczywistego?
Wymien te witasciwe dla zadan okresowych i nieokresowych?

2. Ktore strategie szeregowania czasu rzeczywistego wymagaja wywtaszczania?
3. Kiedy strategia szeregowania moze byc stosowana bez wywtaszczania?

4. Przeanalizuj prace algorytmu RMS dla dwoch zadan z parametrami: £ = 25,
P, =50, Ey = 30, P, = 75. Przedstaw wynik na diagramie czasowym. Jak ma sie
uzyskany wynik do podanego wyzej warunku teoretycznego szeregowalnosci zbioru
zadan?

5. Zastosuj do przyktadowych zadan z poprzedniego pytania algorytm EDF z czasami
uwolnienia zadan réwnymi poczatkom ich okresow, i terminami zakonczenia
rownymi koncom okreséw. Wynik przedstaw na diagramie czasowym.

Planowanie w systemach czasu rzeczywistego — podsumowanie 27

