
Czas systemowy

System operacyjny oferuje szereg usług związanych z czasem. Jedną z podstawowych
jest informacja o aktualnym czasie bezwzględnym, zwanym czasem rzeczywistym.
Czas rzeczywisty nazywany jest również czasem kalendarzowym i wyrażany jest
względem pewnej strefy czasowej.

System odmierza upływający czas na bieżąco, za pomocą urządzenia programowego
zwanego zegarem, zliczając kolejne odcinki czasu na podstawie przerwań ze
sprzętowego timera. Jednak problemem jest początkowa inicjalizacja zegara.

Dodatkowo, problemem może być dokładność mierzonego czasu. Po pewnym czasie
pracy wskazania każdego zegara stają się niedokładne. Potrzebna jest okresowa
synchronizacja zegara z jakimś wzorcem czasu.

Poza informacją o aktualnym czasie rzeczywistym system operacyjny świadczy jeszcze
inne usługi związane z czasem, takie jak: zawieszanie procesu/wątku na określony
czas, usługi timerów, i inne.

Reprezentacja czasu, zegary, timery 1



Sprzętowy zegar czasu rzeczywistego RTC

Zegar czasu rzeczywistego (real time clock RTC) jest urządzeniem odmierzającym
upływający czas w skali bezwzględnej. Zegar RTC typowo posiada własne źródło
zasilania, albo zewnętrzne albo wbudowane w układ zegara, pozwalające na ciągłe
odmierzanie czasu przy braku stałego zasilania.

Sprzętowy zegar czasu rzeczywistego z własnym zasilaniem jest typowym wzorcem
czasu stosowanym w systemach komputerowych w celu umożliwienia inicjalizacji
zegara systemowego po starcie systemu. Jednak dokładność zegarów RTC jest często
niewystarczająca dla normalnej pracy systemu.

Reprezentacja czasu, zegary, timery — zegary RTC 2



Synchronizacja zegara systemowego

Dla zapewnienia dokładnego pomiaru czasu, system po starcie może zsynchronizować
swój zegar z jakimś dokładnym wzorcem zewnętrznym. Na przykład, może to być
internetowy serwer czasu. Jednak wiele systemów czasu rzeczywistego z różnych
powodów nie może być połączonych z Internetem. W takich systemach czasami
konieczne jest korzystanie z dokładnego wzorca czasu, takiego jak np. zegar atomowy.

W systemach czasu rzeczywistego często ważniejsza od dokładności bezwzględnej jest
synchronizacja między elementami systemu. Rozważmy na przykład linię produkcyjną
o prędkości rzędu metrów na sekundę, w którym systemy obsługujące różne elementy
linii miałyby czas różniący się o sekundę, lub więcej. Innym dobrym przykładem jest
konieczność synchronizacji zegarów krytycznych systemów mikroprocesorowych
zainstalowanych na pokładzie współczesnego samolotu pasażerskiego. W takich
systemach można desygnować jeden z systemów jako wzorcowy, i pozostałe systemy
powinny z nim okresowo synchronizować swój czas.

W czasie startu systemu zegar jest inicjalizowany skokowo. Jednak okresowa
synchronizacja, w czasie normalnej pracy systemu, musi być wykonywana ostrożnie,
bardzo małymi kroczkami, aby nie spowodować zaburzeń w pracy systemu.

Dodatkowo, po dokładnym zsynchronizowaniu swojego zegara programowego, system
operacyjny może/powinien dokonać synchronizacji zegara sprzętowego RTC.

Reprezentacja czasu, zegary, timery — zegary RTC 3



Timer sprzętowy

Timer (czytaj: tajmer) jest urządzeniem odmierzającym odcinek czasu, po którym
generuje zdarzenie. W odróżnieniu od zegarów które typowo liczą czas w sposób ciągły
„do przodu”, timery zwykle odmierzają odcinek czasu od zaprogramowanej wartości
w dół, i generują jakieś zdarzenie po osiągnięciu wartości zero.

Elektroniczny timer sprzętowy jest skonstruowany z oscylatora, który generuje przebieg
zmienny o określonym okresie i licznika zaprogramowanego na pewną liczbę, który przy
każdym impulsie oscylatora dekrementuje (zmniejsza o jeden) tę wartość. Po
osiągnięciu zera timer generuje sygnał i cykl kończy się.

Reprezentacja czasu, zegary, timery — timery sprzętowe 4



Timer sprzętowy (cd.)

Osiągnięcie zera przez licznik nazywamy przeterminowaniem (expiration) timera.
Sytuację tę timer sygnalizuje generując jakieś zdarzenie. W systemie komputerowym
często jest to przerwanie.

Timer elektroniczny może pracować cyklicznie, automatycznie wznawiając odliczanie
po przeterminowaniu się.

System komputerowy zwykle posiada jeden lub więcej timerów sprzętowych, natomiast
system operacyjny może implementować wiele timerów programowych.

System operacyjny może utrzymywać informację o czasie rzeczywistym (systemowym)
przez inkrementowanie wartości czasu po każdym przeterminowaniu timera.

Reprezentacja czasu, zegary, timery — timery sprzętowe 5



Zegary i timery — podsumowanie

Własności zegarów:

• odmierzają czas rzeczywisty w sposób
ciągły do przodu

• ustawione raz, pracują nieprzerwanie;
wymagają własnego źródło zasilania

• ustawienie tylko przez system, dostęp
dla użytkowników tylko do odczytu

• własności specjalne: konieczna wstępna
synchronizacja do czasu uniwersalnego
oraz okresowa synchronizacja ze
względu na długotrwałą pracę

• dodatkowe parametry: strefa czasowa,
ustawienia czasu letniego; komplikacje
przy zmianach skokowych

Własności timerów:

• odmierzają odcinki czasu
jednorazowo do tyłu

• praca wielokrotna start/stop

• ustawianie, uruchamianie,
zerowanie przez procesy
użytkowników

• własności specjalne:
generowanie zdarzenia po
przeterminowaniu

Reprezentacja czasu, zegary, timery — własności 6



Funkcje czasu — interfejs tradycyjny

Tradycyjne uniksowe funkcje czasu zegarowego wyrażają czas w sekundach. Funkcja
time zwraca czas bieżący jako liczbę sekund, jakie upłynęły od godziny 00:00 dnia
1 stycznia 1970.

#include <sys/types.h>

#include <time.h>

time_t time(time_t *tloc);

Typ time_t jest równoważny long int (ze znakiem) i pozwala na reprezentację
czasu od godziny 0:00 1 stycznia 1970 do godziny 04:14:07 19 stycznia 2038.1

1Fakt że do odliczania czasu użyta jest liczba ze znakiem wydaje się marnotrawstwem jednego cennego bitu. Użycie

liczby bez znaku „wydłużyłoby życie” Uniksa do roku 2106 (ale kosztem niemożności zgłaszania błędu funkcji time przez
wartość -1). Zatem w roku 2038 można oczekiwać w systemach komputerowych na platformie Uniksa problemów z czasem,

podobnych do tych, które występowały na innych platformach na początku roku 2001. W rzeczywistości różne problemy
z czasem zaczęły się już pojawiać. 10 stycznia 2004 o godzinie 14:37:04 minęła połowa okresu „życia” Uniksa (czyli

ustawił się najwyższy bit), ale właśnie dzięki zastosowaniu liczby ze znakiem obyło się bez większych błędów, zawinionych
przez programistów, którzy by o tym znaku zapomnieli. 12 maja 2006 pojawiły się raporty o wielu „zwisach” baz danych,
które nastąpiły dokładnie jeden miliard sekund przed feralną datą 2038 roku. Okazało się, że w niektórych serwerach

ustawione były tak długie time-outy na transakcje, i programy sprawdzające datę po tym okresie nie mogły sobie poradzić
z otrzymanymi wynikami...

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 7



Funkcje czasu — obliczenia kalendarzowe

Funkcja localtime tworzy i wypełnia strukturę struct tm, która daje dostęp do
elementów aktualnego czasu. Brana jest pod uwagę lokalna strefa czasowa, czas
letni/zimowy, lata przestępne, a nawet sekundy przestępne.2

Funkcja mktime zamienia strukturę czasową tm na liczbę sekund jak w funkcji time,
dodatkowo kompletując i normalizując pola w strukturze, które mogą być wypełnione
częściowo, lub poza zakresem (np. tm_hour < 0 lub > 23).

struct tm *localtime(const time_t *clock);

time_t mktime(struct tm *timeptr);

struct tm {

int tm_sec; /* seconds after the minute - [0, 61] */

/* for leap seconds */

int tm_min; /* minutes after the hour - [0, 59] */

int tm_hour; /* hour since midnight - [0, 23] */

int tm_mday; /* day of the month - [1, 31] */

int tm_mon; /* months since January - [0, 11] */

int tm_year; /* years since 1900 */

int tm_wday; /* days since Sunday - [0, 6] */

int tm_yday; /* days since January 1 - [0, 365] */

int tm_isdst; /* flag for alternate daylight savings time */

};

2Ostatnia sekunda przestępna, określana przez organizację IERS (International Earth Rotation Service), wystąpiła

(równocześnie na całym świecie): 2016-12-31 23:59:60Z. Więcej o sekundach przestępnych:
http://queue.acm.org/detail.cfm?id=1967009

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 8



Funkcje czasu wirtualnego procesów

Zupełnie inną rolę pełni funkcja times obliczająca czas procesora zużyty na obliczenia
danego procesu.

#include <sys/times.h>

#include <limits.h>

clock_t times(struct tms *buf);

struct tms {

clock_t tms_utime; /* user time */

clock_t tms_stime; /* system time */

clock_t tms_cutime; /* user time, children */

clock_t tms_cstime; /* system time, children */

};

• Funkcja times zwraca czas rzeczywisty (zegarowy), jaki upłynął od jakiegoś
arbitralnie ustalonego momentu w czasie. Może to być np. moment startu systemu.
Jednostką jest tzw. tik (tick), którego liczbę na sekundę określa makro clk tck

(przykładowo 50, 60, a obecnie najczęściej 100 lub 1000).

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 9



• Struktura struct tms jest wypełniana przez funkcję times wartościami czasu
procesora zużytego przez proces, i oddzielnie jego zakończone podprocesy, które
zostały poprawnie obsłużone funkcją wait. Te wartości czasu są podobnie liczone
i podawane w tych samych jednostkach tik-u.

• Ponadto wirtualne czasy zarówno procesu jak i potomków liczone są w rozbiciu na
tzw. czas użytkownika, czyli wykonanie instrukcji programu, i czas systemu, tzn.
obliczenia funkcji systemowych w jądrze Uniksa.

Poza rolą jednostki czasu wirtualnego procesów, tik tradycyjnie pełni w systemach
operacyjnych inną ważną rolę. Tikiem nazywane jest przerwanie zegarowe (ściślej, tik
jest okresem tego przerwania, typowo 100x/s lub 1000x/s, czyli 10ms lub 1ms),
obsługiwane przez system, który budzi się z tą częstotliwością, i obsługuje różne
zdarzenia: przeterminowane timery (systemowe), planowanie procesów, itp. Wartość tik
definiuje zatem rozdzielczość (resolution) zegara systemowego, czyli częstotliwość
z jaką jest aktualizowany.

W nowoczesnych systemach operacyjnych ta rola tiku coraz częściej okazuje się
nieodpowiednia. Dla systemów czasu rzeczywistego, planowanie procesów z okresem 10
milisekund jest często niewystarczające. Natomiast w systemach wymagających
energooszczędności, budzenie się 100 razy na sekundę uniemożliwia procesorowi
wchodzenie w tryby głębokiego uśpienia.

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 10



Timer procesu

Interfejs tradycyjny wprowadził własny timer programowy czasu rzeczywistego dla
każdego procesu. Nazywany budzikiem (ang. alarm) timer programowany jest
w sekundach, i po przeterminowaniu przysyła do procesu dedykowany mu sygnał
SIGALRM. 3

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

Nie ma oddzielnych operacji zaprogramowania i wystartowania timera — po
zaprogramowaniu niezerowej wartości timer od razu uruchamia się. Jeśli był już
uruchomiony to wywołanie funkcji powoduje jego zaprogramowanie na nową wartość.
W tym przypadku funkcja zwraca liczbę sekund pozostałą do poprzednio
zaprogramowanego przeterminowania. Wywołanie funkcji z argumentem 0 powoduje
zatrzymanie timera, o ile był uruchomiony.

3Fakt, że twórcy Uniksa uznali, że odmierzanie czasu rzeczywistego dla procesu może być wyrażone w sekundach,
jest swoistym znakiem czasu. Na początku lat 70-tych dwudziestego wieku nie przewidywali oni zastosowań, w których

potrzebne (albo wręcz praktycznie możliwe) byłoby odcinki 0.1 sekundy, 0.01 sekundy, albo nawet na milisekundy, mikro-
sekundy, nanosekundy ...

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 11



Zawieszenie wykonywania procesu — funkcja sleep

W tradycyjnym interfejsie systemów uniksowych istnieje funkcja sleep pozwalająca
zawiesić wykonywanie procesu na określoną liczbę sekund. W trakcie wykonywania tej
funkcji proces pozostaje w stanie uśpienia, normalnie wykorzystywanym do oczekiwania
na jakieś zasoby, blokady, operacje I/O, itp.

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Funkcja sleep może zakończyć się po czasie innym niż zadana liczba sekund. Szybszy
powrót jest możliwy gdy proces otrzyma sygnał, nawet jeśli zostanie on obsłużony —
po zakończeniu obsługi sygnału i wznowieniu funkcji sleep następuje natychmiastowe
jej zakończenie. W takim przypadku funkcja zwraca liczbę „nieprzespanych” sekund.
Możliwy jest również późniejszy niż zadany powrót z funkcji sleep, np. w wyniku
zwykłego planowania procesów.

Niektóre starsze implementacje funkcji sleep wykorzystywały sygnał SIGALRM,
i w efekcie kolidowały z ewentualnym wykorzystaniem timera przez proces.
Współczesne wersje nie mają tej wady. Działają również poprawnie w środowisku
wielowątkowym, usypiając tylko wywołujący wątek.

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 12



Funkcje czasu — napisy sformatowane

Funkcja ctime tworzy zapis daty i czasu w postaci stringa o ustalonym 26-znakowym
formacie: "Thu Nov 23 11:04:20 2000\n\0". Wyświetlany jest zawsze czas
lokalny, i napis ten nie podlega żadnym, lokalizacjom, konwencjom, ani konwersjom.

#include <time.h>

char *ctime(const time_t *clock);

Istnieje również rodzina funkcji do tworzenia dowolnie sformatowanych napisów
czasowych, z uwzględnieniem lokalizacji (języka i konwencji lokalnych):

#include <time.h>

size_t strftime(char *restrict s, size_t maxsize, const char

*restrict format, const struct tm *restrict timeptr);

int cftime(char *s, char *format, const time_t *clock);

int ascftime(char *s, const char *format, const struct tm *timeptr);

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 13



Krótkie podsumowanie — pytania sprawdzające

Odpowiedz na poniższe pytania:

1. Jaka jest podstawowa jednostka czasu zegara czasu rzeczywistego systemów
UNIX-owych i POSIX-owych, i jaki czas absolutny mierzy ten zegar?

2. Na czym polega proces synchronizacji czasu przez system operacyjny?

3. Czym różni się czas rzeczywisty od czasu wirtualnego?

4. Czym różnią się zegary od timerów?

Reprezentacja czasu, zegary, timery — pytania 14



Timery programowe POSIX XSI

Starsza, bardziej rozpowszechniona i szerzej implementowana specyfikacja standardu
POSIX, zwana XSI (X/Open System Interface) wymaga, żeby każda implementacja
dostarczała co najmniej następujących timerów:

ITIMER REAL — odmierza w czasie rzeczywistym i w momencie przeterminowania
generuje sygnał SIGALRM.

ITIMER VIRTUAL — odmierza w czasie wirtualnym (czasie CPU procesu)
i w momencie przeterminowania generuje sygnał SIGVTALRM.

ITIMER PROF — odmierza w czasie wirtualnym (czasie CPU i czasie systemowym
procesu) i w momencie przeterminowania generuje sygnał SIGPROF.

Do zarządzania timerami służą poniższe funkcje, gdzie parametr which określa
konkretny timer, parametr value określa wartość ustawianego czasu, a parametr
ovalue funkcja setitimer ustawia na pozostałą część poprzedniej wartości.

#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *restrict value,

struct itimerval *restrict ovalue);

Reprezentacja czasu, zegary, timery — timery programowe POSIX XSI 15



Wartości czasowe dla timerów POSIX XSI

Do programowania timerów XSI wykorzystywana jest struktura struct itimerval

zawierająca co najmniej następujące elementy:

struct timeval it_value; /* time until next expiration */

struct timeval it_interval; /* value to reload into the timer */

Oba powyższe elementy określane są za pomocą struktury czasowej struct timeval

zawierającej co najmniej następujące elementy:

time_t tv_sec; /* seconds since the Epoch */

time_t tv_usec; /* and microseconds */

Jeśli pole it_interval wartości *value jest różne od zera to timer jest restartowany
natychmiast po przeterminowaniu. Jeśli pole it_value wartości *value wynosi 0 to
funkcja setitimer zatrzymuje timer.

Badanie timera XSI programem periodicasterisk.c
Badanie czasu wykonywania funkcji programem xsitimer.c
Badanie rozdzielczości funkcji nanosleep programem nanotest.c

Reprezentacja czasu, zegary, timery — timery programowe POSIX XSI 16



Timery programowe POSIX TMR

Inna specyfikacja standardu POSIX, zwana TMR, wprowadza inny rodzaj timerów. Są
one tworzone w programie w powiązaniu z istniejącymi zegarami czasu rzeczywistego
(jak CLOCK_REALTIME). Program może stworzyć wiele takich timerów, i należą one do
danego procesu (nie są dziedziczone przez podprocesy).

Tworzenie timerów POSIX TMR przebiega według następującego schematu:

#include <signal.h>

#include <time.h>

int timer_create(clockid_t clock_id, struct sigevent *restrict evp,

timer_t *restrict timerid);

Struktura struct sigevent określa dla danego timera jaki sygnał ma być wysłany
w momencie przeterminowania (domyślnym jest sygnał SIGALRM co pozwala na
całkowite pominięcie struktury struct sigevent w wywołaniu timer_create).
Inną możliwością powiadamiania procesu o przeterminowaniu timera jest uruchomienie
wątku. Możliwe jest również żądanie braku jakiegokolwiek powiadomienia. W takim
przypadku timer w czasie pracy musi być każdorazowo odpytywany o pozostały czas.

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 17



Opcje powiadamiania dla timerów POSIX TMR

struct sigevent {

int sigev_notify; /* notification type */

int sigev_signo; /* signal number */

union sigval sigev_value; /* signal value */

...

};

union sigval {

int sival_int; /* integer value */

void *sival_ptr; /* pointer value */

};

Rodzaj powiadamiania związany z timerem określa się w strukturze sigevent tworząc
dany timer. Wartość sigev_notify może przybierać następujące wartości:

SIGEV NONE — brak powiadomienia

SIGEV SIGNAL — zwykłe powiadamianie sygnałem

SIGEV THREAD — w momencie przeterminowania timera uruchom wątek

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 18



Funkcje timerów POSIX TMR

Timery POSIX TMR programuje się i uruchamia funkcją timer_settime,
a pozostały czas odczytuje funkcją timer_gettime, analogicznie jak dla timerów
XSI. Funkcja timer_settime posiada opcjonalne flagi, i m.in. może pracować
z czasem bezwzględnym (flaga TIMER_ABSTIME, wymaga zaprogramowania pełnego
czasu zegarowego, zamiast interwału czasowego). Pozwala to kontrolować i korygować
dryf timera w programach (patrz poniżej).

#include <time.h>

int timer_getoverrun(timer_t timerid);

int timer_gettime(timer_t timerid, struct itimerspec *value);

int timer_settime(timer_t timerid, int flags,

const struct itimerspec *value, struct itimerspec *ovalue);

int timer_delete(timer_t timerid);

Funkcja timer_getoverrun zwraca liczbę przeterminowań danego timera, dla których
nie został doręczony sygnał wskutek wstrzymywania. Proces może czasowo wstrzymać
otrzymywanie sygnałów, wtedy kolejne przeterminowania timera nie generują dalszych
sygnałów, natomiast proces może dowiedzieć się o takiej sytuacji dzięki tej funkcji.

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 19



Wartości czasowe dla timerów POSIX TMR

Czasy do programowania timerów POSIX TMR określa się za pomocą struktur
struct itimerspec, które analogicznie do struktur struct itimerval timerów
XSI, zawierają co najmniej pola:

struct timespec it_interval; /* timer period */

struct timespec it_value; /* timer expiration */

Wartości czasowe wykorzystywane przez timery POSIX TMR są nieco inne niż dla
timerów POSIX XSI. Struktura struct timespec zawiera co najmniej następujące
elementy, pozwalające wyznaczać czas jako kombinację liczby sekund i nanosekund:

time_t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

Badanie timera POSIX TMR programem periodicmessage.c
Badanie czasu wykonywania funkcji programem tmrtimer.c

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 20



Zegary programowe czasu rzeczywistego

Standard POSIX specyfikacja TMR wprowadziła mechanizm zegara pozwalającego
obliczać czas kalendarzowy z dokładnością większą od jednej sekundy. Następujące
funkcje wykonują operacje na zegarach:

#include <time.h>

int clock_getres(clockid_t clock_id, struct timespec *res);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_settime(clockid_t clock_id, const struct timespec *tp);

Parametr clock_id określa zegar, na którym ma być wykonana dana operacja, przy
czym każdy system obowiązkowo musi implementować zegar czasu rzeczywistego
CLOCK_REALTIME.

Jak widać, wartości czasowe wykorzystywane przez te zegary są takie same jak dla
timerów POSIX TMR.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 21



Ćwiczenia z zegarami czasu rzeczywistego4

Pomiar czasu wywołania funkcji za pomocą zegara CLOCK_REALTIME za pomocą
programu clockrealtimetiming.c

Pomiar czasu wywołania funkcji za pomocą zegara CLOCK_HIGHRES za pomocą
programu clockrealtimetiming2.c

Badanie rozdzielczości zegara CLOCK_REALTIME za pomocą programu
clockrealtimetest.c

Badanie rozdzielczości zegara CLOCK_HIGHRES za pomocą programu
clockrealtimetest2.c

4Przykładowe programy wymienione w tym PDF-ie pochodzą z książki „Unix Systems Programming: Communication,
Concurrency, and Threads” wymienionej w sekcji Referencje.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 22



Zawieszenie wykonywania wątku — funkcja nanosleep

Rozszerzenie realtime standardu POSIX wprowadziło kolejną funkcję zawieszania
procesu (dokładniej: wątku) na określony czas, wyrażony za pomocą tej samej
struktury timespec:

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

Podobnie jak inne funkcje zawieszające procesy, funkcja wraca po upłynięciu zadanego
czasu, lub nieco później, w przypadku:

• zaokrąglenia wartości czasowej do rozdzielczości
• planowania procesów i obciążenia systemu

W przypadku otrzymania (i obsłużenia) sygnału funkcja natychmiast kończy pracę,
sygnalizując powrót przed upływem zadanego czasu. W takim przypadku, o ile drugi
argument nie jest NULL, funkcja wpisuje do tej struktury wartość pozostałego
(nieprzespanego) czasu.

Badanie rozdzielczości spania funkcji nanosleep.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 23



Zawieszenie wykonywania wątku — inne możliwości

Często pojawia się potrzeba czasowego wstrzymania wykonywania procesu lub wątku.
Poza wykonaniem tej operacji za pomocą funkcji sleep() i nanosleep()

przedstawionych wyżej istnieje szereg innych możliwości, które są czasami wygodne.

Możliwe jest wykorzystanie timera do obudzenia sygnałem i zawieszenie procesu na
czas nieokreślony (funkcje pause(), sigpause(), i inne). Do programowania
doręczenia sygnału jest dedykowany sygnał SIGALRM i funkcja alarm(), ale timery
TMR dostarczają wielu alternatywnych możliwości.

Inną możliwością jest polling, czyli odpytywanie jakiegoś timera lub zegara. Proces lub
wątek może w pętli zawieszać się na jakieś krótkie odcinki czasu, okresowo
sprawdzając upływ czasu, przed wznowieniem normalnej pracy. Powoduje to co prawda
pewne obciążenie procesora w tym okresie „zawieszenia”, ale pozwala wątkowi
kontrolować sytuację i reagować na inne zdarzenia.

Również możliwe jest wykorzystanie innych mechanizmów, niezwiązanych
z odmierzaniem czasu, na przykład blokady pliku, semafora, muteksa, bariery, itp.
Konkretne rozwiązanie może być właściwe, jeżeli zawieszenie wątku jest związane
z odpowiednimi operacjami, a niekoniecznie z określoną długością odcinka czasu.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 24



Błędy pomiaru czasu

W konstrukcji timerów programowych kryją się mechanizmy generujące błędy pomiaru
czasu. Podstawowym zjawiskiem jest opóźnienie timera (timer latency), które
oznacza niezerowy czas wykonywania pewnych operacji timera, zwykle czas pomiędzy
wystąpieniem przeterminowania timera a rozpoczęciem procedury jego obsługi.
Nieuwzględnienie tego czasu może prowadzić do błędów.

Na przykład, jeśli używamy timera cyklicznego z okresem 2 sekund, to po
przeterminowaniu się tego timera jest on restartowany, lecz ten restart może potrwać
jakiś niewielki okres czasu, np. 5µsekund. W takim przypadku okres cyklu roboczego
tego timera wyniesie nie 2 sekundy ale 2.000005. Różnica jest niewielka, ale powstałe
opóźnienie będzie się kumulować. Narastający błąd wynikający z kumulowania się
błędów pracy okresowej nazywa się dryfem timera (timer drift).

Łatwo zauważyć, że jeśli timer nie będzie restartowany samoistnie, tylko przez handler
sygnału, to pojedyncze opóźnienie takiego restartu może być większe. W tym wypadku
nałoży się na nie jeszcze błąd wynikający z rozdzielczości timera. Na przykład, jeśli
rozdzielczość timera wynosi 10 ms, a zaprogramowany okres byłby 22 ms (przypadek
cokolwiek ekstremalny), to w rzeczywistości obudzenie handlera i restart timera
nastąpią po czasie nie krótszym niż 30 ms.

Reprezentacja czasu, zegary, timery — błędy pomiaru czasu 25



W przypadku pracy cyklicznej można te błędy ograniczyć wykorzystując czas
bezwzględny zamiast względnego. Handler obudzony w każdym cyklu oblicza okres
czasu pozostały do następnego nominalnego czasu działania, i programuje dokładnie
taki czas. W takim przypadku błędy nie kumulują się, i nigdy nie powinny przekroczyć
wartości rozdzielczości timera.

Wszystkie urządzenia pomiaru czasu wykazują jeszcze inny rodzaj błędów określany
ogólnie jako nierównomierności (jitter). Są to niewielkie fluktuacje czasowe, które
można podzielić ze względu na ich przyczynę na deterministyczne i losowe.
Deterministyczne wynikają z charakterystyki stosowanych algorytmów, lub własności
sprzętu obliczeniowego, natomiast losowe wynikają z nakładania się szumów cieplnych
i innych zjawisk.

Istnieje jeszcze jedno zjawisko anomalne możliwe w przypadku pracy cyklicznej timera.
Może się zdarzyć, że handler timera obudzi się później niż się spodziewał, lub jego
praca przedłuży się aż do wystąpienia kolejnego przeterminowania (handler typowo
wstrzymuje lub ignoruje sygnały w czasie swojej pracy). Jeśli wtedy obliczy czas
pozostały do tego kolejnego zdarzenia, to może on wyjść ujemny. Zjawisko takie
nazywane jest przekroczeniem timera (timer overrun) i formalnie nie jest błędem,
ale może spowodować błąd programu, jeśli nie będzie przewidziane i prawidłowo
obsłużone.

Reprezentacja czasu, zegary, timery — błędy pomiaru czasu 26



Badanie błędów pomiaru czasu programem abstime.c

./abstime -a 0.022 1000 0.005

Powyższe wywołanie symuluje tysiąc wykonań timera z okresem 22 milisekund,
i czasem wykonania handlera sygnału 5 milisekund, wykorzystując zegar czasu
absolutnego.

./abstime -r 0.022 1000 0.005

Powyższe wywołanie powtarza poprzedni eksperyment, ale z wykorzystaniem zegara
czasu względnego. Kumulacyjny błąd będzie typowo dużo większy.

./abstime -a 0

Powyższe wywołanie pozwala oszacować rozdzielczość zegara sprzętowego przez
generowanie sygnału po natychmiastowym jednorazowym przeterminowaniu timera.

./abstime -a 0.0 1000 0.0

Powyższe wywołanie pozwala oszacować maksymalną liczbę sygnałów timera jakie
komputer jest w stanie obsłużyć na sekundę wykonując tysiąc przerwań z czasem
opóźnienia zero.

Reprezentacja czasu, zegary, timery — błędy pomiaru czasu 27



Krótkie podsumowanie — pytania sprawdzające

Odpowiedz na poniższe pytania:

1. Czym różnią się wartości czasowe wykorzystywane przez timery specyfikacji XSI
i TMR od interfejsu tradycyjnego?

2. Jakie są operacje możliwe do wykonania na timerze programowym?
Jak należy ustawić argumenty wywołania aby wykonać te operacje?

3. W jaki sposób proces może zawiesić swoje wykonywanie na pewien czas?

4. Jakie są możliwe błędy związane z pomiarem czasu?

Reprezentacja czasu, zegary, timery — pytania 28



Referencje

High Resolution Timers, Chapter 5
https://export.writer.zoho.com/public/rreginelli/

Chapter-5---High-Resolution-Timers-Final1/fullpage

Kay A. Robbins, Steven Robbins: „Unix Systems Programming: Communication,
Concurrency, and Threads”, Prentice-Hall, 2003

Reprezentacja czasu, zegary, timery — referencje 29


