Czas systemowy

System operacyjny oferuje szereg ustug zwigzanych z czasem. Jedng z podstawowych
jest informacja o aktualnym czasie bezwzglednym, zwanym czasem rzeczywistym.
Czas rzeczywisty nazywany jest rowniez czasem kalendarzowym i wyrazany jest
wzgledem pewnej strefy czasowe;.

System odmierza uptywajacy czas na biezaco, za pomocga urzadzenia programowego
zwanego zegarem, zliczajac kolejne odcinki czasu na podstawie przerwan ze
sprzetowego timera. Jednak problemem jest poczatkowa inicjalizacja zegara.

Dodatkowo, problemem moze by¢ doktadnosé mierzonego czasu. Po pewnym czasie
pracy wskazania kazdego zegara stajg sie niedoktadne. Potrzebna jest okresowa
synchronizacja zegara z jakim$ wzorcem czasu.

Poza informacjg o aktualnym czasie rzeczywistym system operacyjny $wiadczy jeszcze
inne ustugi zwiazane z czasem, takie jak: zawieszanie procesu/watku na okreslony
czas, ustugi timerow, i inne.

Reprezentacja czasu, zegary, timery

Sprzetowy zegar czasu rzeczywistego RTC

Zegar czasu rzeczywistego (real time clock RTC) jest urzadzeniem odmierzajacym
uptywajacy czas w skali bezwzglednej. Zegar RTC typowo posiada wtasne zrodto
zasilania, albo zewnetrzne albo wbudowane w uktad zegara, pozwalajace na ciggte
odmierzanie czasu przy braku statego zasilania.

S DALLAS
DS12B887

REAL TIME
9818A2 101880

Sprzetowy zegar czasu rzeczywistego z wtasnym zasilaniem jest typowym wzorcem
czasu stosowanym w systemach komputerowych w celu umozliwienia inicjalizacji
zegara systemowego po starcie systemu. Jednak doktadnosc¢ zegarow RTC jest czesto
niewystarczajaca dla normalnej pracy systemu.

Reprezentacja czasu, zegary, timery — zegary RTC 2

Synchronizacja zegara systemowego

Dla zapewnienia doktadnego pomiaru czasu, system po starcie moze zsynchronizowac
swoj zegar z jakim$ doktadnym wzorcem zewnetrznym. Na przyktad, moze to byc
internetowy serwer czasu. Jednak wiele systemdéw czasu rzeczywistego z roéznych
powoddw nie moze by¢ potaczonych z Internetem. W takich systemach czasami
konieczne jest korzystanie z doktadnego wzorca czasu, takiego jak np. zegar atomowy.

W systemach czasu rzeczywistego czesto wazniejsza od dokfadnosci bezwzglednej jest
synchronizacja miedzy elementami systemu. Rozwazmy na przyktad linie produkcyjna
o predkosci rzedu metrow na sekunde, w ktorym systemy obstugujace rézne elementy
linii miatyby czas rozniacy sie o sekunde, lub wiecej. Innym dobrym przyktadem jest
koniecznos¢ synchronizacji zegardw krytycznych systemow mikroprocesorowych
zainstalowanych na poktadzie wspotczesnego samolotu pasazerskiego. W takich
systemach mozna desygnowac jeden z systemow jako wzorcowy, i pozostate systemy
powinny z nim okresowo synchronizowac swoj czas.

W czasie startu systemu zegar jest inicjalizowany skokowo. Jednak okresowa
synchronizacja, w czasie normalnej pracy systemu, musi by¢ wykonywana ostroznie,
bardzo matymi kroczkami, aby nie spowodowac zaburzen w pracy systemu.

Dodatkowo, po doktadnym zsynchronizowaniu swojego zegara programowego, system
operacyjny moze/powinien dokona¢ synchronizacji zegara sprzetowego RTC.

Reprezentacja czasu, zegary, timery — zegary RTC

Timer sprzetowy

Timer (czytaj: tajmer) jest urzadzeniem odmierzajacym odcinek czasu, po ktérym
generuje zdarzenie. W odroznieniu od zegardw ktére typowo liczg czas w sposob ciagty
,do przodu”, timery zwykle odmierzajg odcinek czasu od zaprogramowanej wartosci

w dot, i generuja jakies zdarzenie po osiggnieciu wartosci zero.

/ \ , \ Program
Crystal g ‘ ‘ i / ‘
oscillator ! , set

b A
> :

AND ', Gounter e >
» gate ' decrement etec

[Enith —y Bl .
00 | =
Lt L ETANTYI

control

A A

Start/Stop

Elektroniczny timer sprzetowy jest skonstruowany z oscylatora, ktéry generuje przebieg
zmienny o okreslonym okresie i licznika zaprogramowanego na pewna liczbe, ktory przy
kazdym impulsie oscylatora dekrementuje (zmniejsza o jeden) te warto$¢. Po
osiggnieciu zera timer generuje sygnat i cykl konczy sie.

Reprezentacja czasu, zegary, timery — timery sprzetowe 4

Timer sprzetowy (cd.)

Osiagniecie zera przez licznik nazywamy przeterminowaniem (expiration) timera.
Sytuacje te timer sygnalizuje generujac jakies zdarzenie. W systemie komputerowym
czesto jest to przerwanie.

Timer elektroniczny moze pracowac cyklicznie, automatycznie wznawiajac odliczanie
PO przeterminowaniu sie.

System komputerowy zwykle posiada jeden lub wiecej timeréw sprzetowych, natomiast
system operacyjny moze implementowac wiele timerow programowych.

System operacyjny moze utrzymywa¢ informacje o czasie rzeczywistym (systemowym)
przez inkrementowanie wartosci czasu po kazdym przeterminowaniu timera.

Reprezentacja czasu, zegary, timery — timery sprzetowe 5

Zegary i timery — podsumowanie

WHtasnosci zegarow:

odmierzajg czas rzeczywisty w sposob
ciggty do przodu

ustawione raz, pracuja nieprzerwanie;
wymagaja wtasnego zrédfo zasilania

ustawienie tylko przez system, dostep
dla uzytkownikow tylko do odczytu

wtasnosci specjalne: konieczna wstepna
synchronizacja do czasu uniwersalnego
oraz okresowa synchronizacja ze
wzgledu na dtugotrwata prace

dodatkowe parametry: strefa czasowa,
ustawienia czasu letniego; komplikacje
przy zmianach skokowych

Wtasnosci timerdw:

e odmierzaja odcinki czasu
jednorazowo do tytu

e praca wielokrotna start/stop

e ustawianie, uruchamianie,
zerowanie przez procesy
uzytkownikow

e wifasnosci specjalne:
generowanie zdarzenia po
przeterminowaniu

Reprezentacja czasu, zegary, timery — wtasnosci

Funkcje czasu — interfejs tradycyjny

Tradycyjne uniksowe funkcje czasu zegarowego wyrazajg czas w sekundach. Funkcja
time zwraca czas biezacy jako liczbe sekund, jakie uptynety od godziny 00:00 dnia
1 stycznia 1970.

#include <sys/types.h>
#include <time.h>

time t time(time_t *tloc);

Typ time_t jest rdwnowazny long int (ze znakiem) i pozwala na reprezentacje
czasu od godziny 0:00 1 stycznia 1970 do godziny 04:14:07 19 stycznia 2038.1

1Fakt ze do odliczania czasu uzyta jest liczba ze znakiem wydaje sie marnotrawstwem jednego cennego bitu. Uzycie
liczby bez znaku ,wydtuzytoby zycie” Uniksa do roku 2106 (ale kosztem niemoznosci zgtaszania btedu funkgcji time przez
wartos¢ -1). Zatem w roku 2038 mozna oczekiwaé w systemach komputerowych na platformie Uniksa probleméw z czasem,
podobnych do tych, ktére wystepowaty na innych platformach na poczatku roku 2001. W rzeczywistosci rézne problemy
z czasem zaczety sie juz pojawiaé. 10 stycznia 2004 o godzinie 14:37:04 mineta potowa okresu ,zycia” Uniksa (czyli
ustawit sie najwyzszy bit), ale wtasnie dzieki zastosowaniu liczby ze znakiem obyto sie bez wiekszych btedéw, zawinionych
przez programistow, ktdrzy by o tym znaku zapomnieli. 12 maja 2006 pojawity sie raporty o wielu ,zwisach” baz danych,
ktére nastgpity doktadnie jeden miliard sekund przed feralng data 2038 roku. Okazato sie, ze w niektorych serwerach
ustawione byty tak dtugie time-outy na transakcje, i programy sprawdzajace date po tym okresie nie mogty sobie poradzi¢
z otrzymanymi wynikami...

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 7

Funkcje czasu — obliczenia kalendarzowe

Funkcja localtime tworzy i wypefnia strukture struct tm, ktora daje dostep do
elementow aktualnego czasu. Brana jest pod uwage lokalna strefa czasowa, czas
letni/zimowy, lata przestepne, a nawet sekundy przestepne.?

Funkcja mktime zamienia strukture czasowa tm na liczbe sekund jak w funkcji time,
dodatkowo kompletujac i normalizujac pola w strukturze, ktére moga by¢ wypetnione
czeSciowo, lub poza zakresem (np. tm_hour < 0 lub > 23).

struct tm *localtime(const time t *clock);
time t mktime(struct tm *timeptr);

struct tm {

int tm_sec; /* seconds after the minute - [0, 61] */
/* for leap seconds */
int tm min; /* minutes after the hour - [0, 59] */

int tm_hour; /* hour since midnight - [0, 23] */
int tm_mday; /* day of the month - [1, 31] %/
int tm_mon; /* months since January - [0, 11] */
int tm_year; /* years since 1900 */
int tm_wday; /* days since Sunday - [0, 6] */
int tm_yday; /* days since January 1 - [0, 365] */
int tm_isdst; /* flag for alternate daylight savings time */
s
2Qstatnia sekunda przestepna, okre$lana przez organizacje IERS (International Earth Rotation Service), wystapita
(rébwnocze$nie na catym Swiecie): 2016-12-31 23:59:60Z. Wiecej o sekundach przestepnych:
http://queue.acm.org/detail.cfm?id=1967009

Reprezentacja czasu, zegary, timery — interfejs tradycyjny

Funkcje czasu wirtualnego procesow

Zupetnie inng role petni funkcja times obliczajgca czas procesora zuzyty na obliczenia
danego procesu.

#include <sys/times.h>
#include <limits.h>

clock_t times(struct tms *buf);

struct tms {

clock t tms utime; /* user time x/

clock t tms stime; /* system time */

clock t tms cutime; /* user time, children */
clock t tms cstime; /* system time, children */

e Funkcja times zwraca czas rzeczywisty (zegarowy), jaki uptynat od jakiego$
arbitralnie ustalonego momentu w czasie. Moze to by¢ np. moment startu systemu.
Jednostkga jest tzw. tik (tick), ktorego liczbe na sekunde okre$la makro CLK_TCK
(przyktadowo 50, 60, a obecnie najczesciej 100 lub 1000).

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 9

e Struktura struct tms jest wypetniana przez funkcje times wartoSciami czasu
procesora zuzytego przez proces, i oddzielnie jego zakonczone podprocesy, ktére
zostaty poprawnie obstuzone funkcja wait. Te wartosci czasu sg podobnie liczone
| podawane w tych samych jednostkach tik-u.

e Ponadto wirtualne czasy zaréwno procesu jak i potomkéw liczone s3 w rozbiciu na
tzw. czas uzytkownika, czyli wykonanie instrukcji programu, i czas systemu, tzn.
obliczenia funkcji systemowych w jadrze Uniksa.

Poza rolg jednostki czasu wirtualnego proceséw, tik tradycyjnie petni w systemach
operacyjnych inng wazng role. Tikiem nazywane jest przerwanie zegarowe (Scislej, tik
jest okresem tego przerwania, typowo 100x/s lub 1000x/s, czyli 10ms lub 1ms),
obstugiwane przez system, ktory budzi sie z t3 czestotliwoscia, i obstuguje rozne
zdarzenia: przeterminowane timery (systemowe), planowanie proceséw, itp. Warto$¢ tik
definiuje zatem rozdzielczo$¢ (resolution) zegara systemowego, czyli czestotliwosé

z jaka jest aktualizowany.

W nowoczesnych systemach operacyjnych ta rola tiku coraz czesciej okazuje sie
nieodpowiednia. Dla systemdw czasu rzeczywistego, planowanie proceséw z okresem 10
milisekund jest czesto niewystarczajgce. Natomiast w systemach wymagajacych
energooszczednosci, budzenie sie 100 razy na sekunde uniemozliwia procesorowi
wchodzenie w tryby gtebokiego uspienia.

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 10

Timer procesu

Interfejs tradycyjny wprowadzit wtasny timer programowy czasu rzeczywistego dla
kazdego procesu. Nazywany budzikiem (ang. alarm) timer programowany jest
w sekundach, i po przeterminowaniu przysyta do procesu dedykowany mu sygnat

SIGALRM. 3

#tinclude <unistd.h>

unsigned int alarm(unsigned int seconds);

Nie ma oddzielnych operacji zaprogramowania i wystartowania timera — po
zaprogramowaniu niezerowej wartosci timer od razu uruchamia sie. Jesli byt juz
uruchomiony to wywotanie funkcji powoduje jego zaprogramowanie na nowa wartosc.
W tym przypadku funkcja zwraca liczbe sekund pozostatg do poprzednio
zaprogramowanego przeterminowania. Wywotanie funkcji z argumentem 0 powoduje
zatrzymanie timera, o ile byt uruchomiony.

3Fakt, ze tworcy Uniksa uznali, ze odmierzanie czasu rzeczywistego dla procesu moze by¢ wyrazone w sekundach,
jest swoistym znakiem czasu. Na poczatku lat 70-tych dwudziestego wieku nie przewidywali oni zastosowan, w ktérych
potrzebne (albo wrecz praktycznie mozliwe) bytoby odcinki 0.1 sekundy, 0.01 sekundy, albo nawet na milisekundy, mikro-

sekundy, nanosekundy ...

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 11

Zawieszenie wykonywania procesu — funkcja sleep

W tradycyjnym interfejsie systemow uniksowych istnieje funkcja sleep pozwalajaca
zawiesi¢ wykonywanie procesu na okreslong liczbe sekund. W trakcie wykonywania tej
funkcji proces pozostaje w stanie uspienia, normalnie wykorzystywanym do oczekiwania
na jakie$ zasoby, blokady, operacje |/0O, itp.

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

Funkcja sleep moze zakonczy¢ sie po czasie innym niz zadana liczba sekund. Szybszy
powrot jest mozliwy gdy proces otrzyma sygnat, nawet jesli zostanie on obstuzony —
po zakonczeniu obstugi sygnatu i wznowieniu funkcji sleep nastepuje natychmiastowe
jej zakonczenie. W takim przypadku funkcja zwraca liczbe ,,nieprzespanych” sekund.
Mozliwy jest réwniez pdzniejszy niz zadany powrdt z funkcji sleep, np. w wyniku
zwyktego planowania procesow.

Niektore starsze implementacje funkcji sleep wykorzystywaty sygnat SIGALRM,
i w efekcie kolidowaty z ewentualnym wykorzystaniem timera przez proces.
Wspodtczesne wersje nie maja tej wady. Dziatajg rowniez poprawnie w Srodowisku
wielowatkowym, usypiajac tylko wywotujacy watek.

Reprezentacja czasu, zegary, timery — interfejs tradycyjny 12

Funkcje czasu — napisy sformatowane

Funkcja ctime tworzy zapis daty i czasu w postaci stringa o ustalonym 26-znakowym
formacie: "Thu Nov 23 11:04:20 2000\n\0". Wyswietlany jest zawsze czas
lokalny, i napis ten nie podlega zadnym, lokalizacjom, konwencjom, ani konwersjom.

#include <time.h>

char *ctime(const time t *clock);

Istnieje réwniez rodzina funkcji do tworzenia dowolnie sformatowanych napisow
czasowych, z uwzglednieniem lokalizacji (jezyka i konwencji lokalnych):

#include <time.h>

size t strftime(char *restrict s, size t maxsize, const char
xrestrict format, const struct tm *restrict timeptr);

int cftime(char *s, char *format, const time t *clock);

int ascftime(char *s, const char *format, const struct tm *timeptr);

Reprezentacja czasu, zegary, timery — interfejs tradycyjny

13

Krotkie podsumowanie — pytania sprawdzajace

Odpowiedz na ponizsze pytania:

1. Jaka jest podstawowa jednostka czasu zegara czasu rzeczywistego systemow
UNIX-owych i POSIX-owych, i jaki czas absolutny mierzy ten zegar?

2. Na czym polega proces synchronizacji czasu przez system operacyjny?
3. Czym rdzni sie czas rzeczywisty od czasu wirtualnego?

4. Czym rdznig sie zegary od timeréw?

Reprezentacja czasu, zegary, timery — pytania

14

Timery programowe POSIX XSI

Starsza, bardziej rozpowszechniona i szerzej implementowana specyfikacja standardu
POSIX, zwana XSI (X/Open System Interface) wymaga, zeby kazda implementacja
dostarczata co najmniej nastepujacych timerow:

ITIMER_REAL — odmierza w czasie rzeczywistym i w momencie przeterminowania
generuje sygnat SIGALRM.

ITIMER_VIRTUAL — odmierza w czasie wirtualnym (czasie CPU procesu)
I W momencie przeterminowania generuje sygnat SIGVTALRM.

ITIMER_PROF — odmierza w czasie wirtualnym (czasie CPU i czasie systemowym
procesu) i w momencie przeterminowania generuje sygnat SIGPROF.

Do zarzadzania timerami stuzg ponizsze funkcje, gdzie parametr which okresla
konkretny timer, parametr value okresla warto$¢ ustawianego czasu, a parametr
ovalue funkcja setitimer ustawia na pozostaty czes¢ poprzedniej wartosci.

#include <sys/time.h>
int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *restrict value,
struct itimerval *restrict ovalue);

Reprezentacja czasu, zegary, timery — timery programowe POSIX XSI

15

Wartosci czasowe dla timerow POSIX XSI

Do programowania timeréw XS| wykorzystywana jest struktura struct itimerval
zawierajaca co najmniej nastepujace elementy:

struct timeval it_value; /* time until next expiration */
struct timeval it interval; /* value to reload into the timer */

Oba powyzsze elementy okreslane s3 za pomoca struktury czasowej struct timeval
zawierajacej co najmniej nastepujace elementy:

time t tv_sec; /* seconds since the Epoch */
time t tv_usec; /* and microseconds */

Jesli pole it _interval wartosci *value jest rozne od zera to timer jest restartowany
natychmiast po przeterminowaniu. Jesli pole it value wartosci *value wynosi 0 to
funkcja setitimer zatrzymuje timer.

Badanie timera XS| programem periodicasterisk.c
Badanie czasu wykonywania funkcji programem xsitimer.c
Badanie rozdzielczosci funkcji nanosleep programem nanotest.c

Reprezentacja czasu, zegary, timery — timery programowe POSIX XSI 16

Timery programowe POSIX TMR

Inna specyfikacja standardu POSIX, zwana TMR, wprowadza inny rodzaj timeréw. Sa
one tworzone w programie w powigzaniu z istniejacymi zegarami czasu rzeczywistego
(jak CLOCK_REALTIME). Program moze stworzy¢ wiele takich timerdw, i nalezg one do
danego procesu (nie sa dziedziczone przez podprocesy).

Tworzenie timeréw POSIX TMR przebiega wedtug nastepujacego schematu:

#include <signal.h>
#include <time.h>

int timer create(clockid t clock _id, struct sigevent *restrict evp,
timer t *restrict timerid);

Struktura struct sigevent okresla dla danego timera jaki sygnat ma by¢ wystany
w momencie przeterminowania (domyslnym jest sygnat SIGALRM co pozwala na
catkowite pominiecie struktury struct sigevent w wywotaniu timer create).
Inng mozliwoscig powiadamiania procesu o przeterminowaniu timera jest uruchomienie
watku. Mozliwe jest rowniez zadanie braku jakiegokolwiek powiadomienia. W takim
przypadku timer w czasie pracy musi by¢ kazdorazowo odpytywany o pozostaty czas.

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 17

Opcje powiadamiania dla timeréw POSIX TMR

struct sigevent {

int sigev_notify; /* notification type */
int sigev_signo; /* signal number */
union sigval sigev_value; /% signal value */

s

union sigval {
int sival int; /* integer value */
void *sival ptr; /* pointer value */

+;

Rodzaj powiadamiania zwigzany z timerem okresla sie w strukturze sigevent tworzac
dany timer. Warto$¢ sigev_notify moze przybiera¢ nastepujace wartosci:

SIGEV_NONE — brak powiadomienia
SIGEV_SIGNAL — zwykte powiadamianie sygnatem

SIGEV_THREAD — w momencie przeterminowania timera uruchom watek

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 18

Funkcje timerow POSIX TMR

Timery POSIX TMR programuje sie i uruchamia funkcjg timer settime,

a pozostaty czas odczytuje funkcja timer_ gettime, analogicznie jak dla timeréw
XSI. Funkcja timer settime posiada opcjonalne flagi, i m.in. moze pracowaé

z czasem bezwzglednym (flaga TIMER_ABSTIME, wymaga zaprogramowania petnego
czasu zegarowego, zamiast interwatu czasowego). Pozwala to kontrolowaé i korygowaé
dryf timera w programach (patrz ponizej).

#include <time.h>

int timer getoverrun(timer_ t timerid);
int timer_ gettime(timer_t timerid, struct itimerspec *value);
int timer_settime(timer_t timerid, int flags,
const struct itimerspec *value, struct itimerspec *ovalue);
int timer delete(timer t timerid);

Funkcja timer getoverrun zwraca liczbe przeterminowan danego timera, dla ktérych
nie zostat doreczony sygnat wskutek wstrzymywania. Proces moze czasowo wstrzymac
otrzymywanie sygnatdw, wtedy kolejne przeterminowania timera nie generuja dalszych

sygnaftdw, natomiast proces moze dowiedzieC sie o takiej sytuacji dzieki tej funkgji.

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 19

Wartosci czasowe dla timeréw POSIX TMR

Czasy do programowania timeréw POSIX TMR okresla sie za pomoca struktur
struct itimerspec, ktore analogicznie do struktur struct itimerval timerdw
XS, zawieraja co najmniej pola:

struct timespec it_interval; /* timer period */
struct timespec it _value; /* timer expiration */

Wartosci czasowe wykorzystywane przez timery POSIX TMR s3 nieco inne niz dla
timeréw POSIX XSI. Struktura struct timespec zawiera co najmniej nastepujace
elementy, pozwalajace wyznaczac czas jako kombinacje liczby sekund i nanosekund:

time t tv_sec; /* seconds */

long tv_nsec; /* nanoseconds */

Badanie timera POSIX TMR programem periodicmessage.c
Badanie czasu wykonywania funkcji programem tmrtimer.c

Reprezentacja czasu, zegary, timery — timery programowe POSIX TMR 20

Zegary programowe czasu rzeczywistego

Standard POSIX specyfikacja TMR wprowadzita mechanizm zegara pozwalajacego
oblicza¢ czas kalendarzowy z doktadnoscig wieksza od jednej sekundy. Nastepujace
funkcje wykonujg operacje na zegarach:

#include <time.h>

int clock getres(clockid t clock _id, struct timespec *res);
int clock gettime(clockid_ t clock_id, struct timespec *tp);
int clock settime(clockid t clock id, const struct timespec *tp);

Parametr clock id okresla zegar, na ktérym ma byc¢ wykonana dana operacja, przy
czym kazdy system obowigzkowo musi implementowaé zegar czasu rzeczywistego
CLOCK_REALTIME.

Jak widac, wartosci czasowe wykorzystywane przez te zegary s3 takie same jak dla
timerow POSIX TMR.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR

21

Cwiczenia z zegarami czasu rzeczywistego’

Pomiar czasu wywoftania funkcji za pomocg zegara CLOCK_REALTIME za pomoc3a
programu clockrealtimetiming.c

Pomiar czasu wywotania funkcji za pomocg zegara CLOCK_HIGHRES za pomoc3
programu clockrealtimetiming?2.c

Badanie rozdzielczosci zegara CLOCK_REALTIME za pomoca programu
clockrealtimetest.c

Badanie rozdzielczosci zegara CLOCK_HIGHRES za pomoca programu
clockrealtimetest2.c

4Przyktadowe programy wymienione w tym PDF-ie pochodza z ksigzki ,,Unix Systems Programming: Communication,
Concurrency, and Threads” wymienionej w sekcji Referencje.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 22

Zawieszenie wykonywania watku — funkcja nanosleep

Rozszerzenie realtime standardu POSIX wprowadzito kolejng funkcje zawieszania
procesu (doktadniej: watku) na okreslony czas, wyrazony za pomoca tej samej
struktury timespec:

#include <time.h>

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);

Podobnie jak inne funkcje zawieszajace procesy, funkcja wraca po uptynieciu zadanego
czasu, lub nieco pozniej, w przypadku:

e zaokraglenia wartosci czasowej do rozdzielczosci
e planowania proceséw i obcigzenia systemu

W przypadku otrzymania (i obstuzenia) sygnatu funkcja natychmiast konczy prace,
sygnalizujac powrodt przed uptywem zadanego czasu. W takim przypadku, o ile drugi
argument nie jest NULL, funkcja wpisuje do tej struktury wartos¢ pozostatego
(nieprzespanego) czasu.

Badanie rozdzielczosci spania funkcji nanosleep.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 23

Zawieszenie wykonywania watku — inne mozliwosci

Czesto pojawia sie potrzeba czasowego wstrzymania wykonywania procesu lub watku.
Poza wykonaniem tej operacji za pomoca funkcji sleep() i nanosleep()
przedstawionych wyzej istnieje szereg innych mozliwosci, ktore sa czasami wygodne.

Mozliwe jest wykorzystanie timera do obudzenia sygnatem i zawieszenie procesu na
czas nieokreslony (funkcje pause (), sigpause(), i inne). Do programowania
doreczenia sygnatu jest dedykowany sygnat SIGALRM i funkcja alarm(), ale timery
TMR dostarczaja wielu alternatywnych mozliwosci.

Inng mozliwoscia jest polling, czyli odpytywanie jakiego$ timera lub zegara. Proces lub
watek moze w petli zawieszac sie na jakies krotkie odcinki czasu, okresowo
sprawdzajac uptyw czasu, przed wznowieniem normalnej pracy. Powoduje to co prawda
pewne obcigzenie procesora w tym okresie ,,zawieszenia”, ale pozwala watkowi
kontrolowac sytuacje i reagowac na inne zdarzenia.

Rowniez mozliwe jest wykorzystanie innych mechanizméw, niezwigzanych

z odmierzaniem czasu, na przyktad blokady pliku, semafora, muteksa, bariery, itp.
Konkretne rozwigzanie moze by¢ witasciwe, jezeli zawieszenie watku jest zwigzane
z odpowiednimi operacjami, a niekoniecznie z okreslong dfugoscig odcinka czasu.

Reprezentacja czasu, zegary, timery — zegary programowe POSIX TMR 24

Btedy pomiaru czasu

W konstrukcji timerow programowych kryja sie mechanizmy generujace btedy pomiaru
czasu. Podstawowym zjawiskiem jest opOznienie timera (timer latency), ktére
oznacza niezerowy czas wykonywania pewnych operacji timera, zwykle czas pomiedzy
wystapieniem przeterminowania timera a rozpoczeciem procedury jego obstugi.
Nieuwzglednienie tego czasu moze prowadzic¢ do btedow.

Na przyktad, jesli uzywamy timera cyklicznego z okresem 2 sekund, to po
przeterminowaniu sie tego timera jest on restartowany, lecz ten restart moze potrwaé
jaki$ niewielki okres czasu, np. dusekund. W takim przypadku okres cyklu roboczego
tego timera wyniesie nie 2 sekundy ale 2.000005. Réznica jest niewielka, ale powstate
opdznienie bedzie sie kumulowac. Narastajacy btad wynikajacy z kumulowania sie
btedéw pracy okresowej nazywa sie dryfem timera (timer drift).

tatwo zauwazyc, ze jesli timer nie bedzie restartowany samoistnie, tylko przez handler
sygnafu, to pojedyncze opoznienie takiego restartu moze by¢ wieksze. W tym wypadku
natozy sie na nie jeszcze btad wynikajacy z rozdzielczosci timera. Na przyktad, jesli
rozdzielczo$¢ timera wynosi 10 ms, a zaprogramowany okres bytby 22 ms (przypadek
cokolwiek ekstremalny), to w rzeczywistosci obudzenie handlera i restart timera
nastapig po czasie nie krétszym niz 30 ms.

Reprezentacja czasu, zegary, timery — bfedy pomiaru czasu 25

W przypadku pracy cyklicznej mozna te btedy ograniczy¢é wykorzystujac czas
bezwzgledny zamiast wzglednego. Handler obudzony w kazdym cyklu oblicza okres
czasu pozostaty do nastepnego nominalnego czasu dziafania, i programuje doktadnie
taki czas. W takim przypadku bfedy nie kumuluj3 sie, i nigdy nie powinny przekroczyé
wartosci rozdzielczosci timera.

Wszystkie urzadzenia pomiaru czasu wykazuja jeszcze inny rodzaj btedow okreslany
ogdlnie jako nierébwnomiernosci (jitter). Sa to niewielkie fluktuacje czasowe, ktére
mozna podzieli¢ ze wzgledu na ich przyczyne na deterministyczne i losowe.
Deterministyczne wynikaja z charakterystyki stosowanych algorytméw, lub wtasnosci
sprzetu obliczeniowego, natomiast losowe wynikajg z naktadania sie szuméw cieplnych
| innych zjawisk.

Istnieje jeszcze jedno zjawisko anomalne mozliwe w przypadku pracy cyklicznej timera.
Moze sie zdarzyé, ze handler timera obudzi sie pdzniej niz sie spodziewat, lub jego
praca przedtuzy sie az do wystapienia kolejnego przeterminowania (handler typowo
wstrzymuje lub ignoruje sygnaty w czasie swojej pracy). Jesli wtedy obliczy czas
pozostaty do tego kolejnego zdarzenia, to moze on wyjs¢ ujemny. Zjawisko takie
nazywane jest przekroczeniem timera (timer overrun) i formalnie nie jest btedem,
ale moze spowodowac btad programu, jesli nie bedzie przewidziane i prawidtowo
obstuzone.

Reprezentacja czasu, zegary, timery — bfedy pomiaru czasu 26

Badanie btedow pomiaru czasu programem abstime.c

./abstime -a 0.022 1000 0.005

Powyzsze wywotanie symuluje tysigc wykonan timera z okresem 22 milisekund,
i czasem wykonania handlera sygnatu 5 milisekund, wykorzystujac zegar czasu
absolutnego.

./abstime -r 0.022 1000 0.005

Powyzsze wywotanie powtarza poprzedni eksperyment, ale z wykorzystaniem zegara
czasu wzglednego. Kumulacyjny btad bedzie typowo duzo wiekszy.

./abstime -a 0

Powyzsze wywotanie pozwala oszacowac rozdzielczo$¢ zegara sprzetowego przez
generowanie sygnatu po natychmiastowym jednorazowym przeterminowaniu timera.

./abstime -a 0.0 1000 0.0

Powyzsze wywotanie pozwala oszacowa¢ maksymalng liczbe sygnatéw timera jakie
komputer jest w stanie obstuzy¢ na sekunde wykonujac tysigc przerwan z czasem
opdznienia zero.

Reprezentacja czasu, zegary, timery — btedy pomiaru czasu

27

Krotkie podsumowanie — pytania sprawdzajace

Odpowiedz na ponizsze pytania:

1. Czym rdznia sie wartosci czasowe wykorzystywane przez timery specyfikacji XSl
I TMR od interfejsu tradycyjnego?

2. Jakie s3 operacje mozliwe do wykonania na timerze programowym?
Jak nalezy ustawic¢ argumenty wywotania aby wykonac te operacje?

3. W jaki sposdb proces moze zawiesi¢ swoje wykonywanie na pewien czas?

4. Jakie s3 mozliwe btedy zwigzane z pomiarem czasu?

Reprezentacja czasu, zegary, timery — pytania

28

Referencje

High Resolution Timers, Chapter 5
https://export.writer.zoho.com/public/rreginelli/
Chapter-5---High-Resolution-Timers-Finall/fullpage

Kay A. Robbins, Steven Robbins: ,,Unix Systems Programming: Communication,
Concurrency, and Threads”, Prentice-Hall, 2003

Reprezentacja czasu, zegary, timery — referencje

29

