Niezawodnosc¢ i odpornos¢ na btedy systemow
informatycznych

Witold Paluszynski
Katedra Cybernetyki i Robotyki
Wydziat Elektroniki, Politechnika Wroctawska
http://www.kcir.pwr.edu.pl/~witold/

2011-2020
Ten utwér jest dostepny na licencji

|@ (1) @\ Creative Commons Uznanie autorstwa-

Na tych samych warunkach 3.0 Unported

Utwor udostepniany na licencji Creative Commons: uznanie autorstwa, na tych
samych warunkach. Udziela sie zezwolenia do kopiowania, rozpowszechniania i/lub
modyfikacji tresci utworu zgodnie z zasadami w/w licencji opublikowane] przez
Creative Commons. Licencja wymaga podania oryginalnego autora utworu,

a dystrybucja materiatéw pochodnych moze odbywac sie tylko na tych samych
warunkach (nie mozna zastrzec, w jakikolwiek sposéb ograniczy¢, ani rozszerzy¢

praw do nich).






Obstuga btedéw

Jesli ,,zwykty” program napotka btad, ktorego nie potrafi rozwigzac albo naprawic,
to typowym i normalnie stosowanym zachowaniem programu jest zakonczenie
pracy, z mozliwie starannym i doktadnym poinformowaniem uzytkownika (jesli taki
istnieje) o powstaniu btedu i jego okolicznosciach.

‘F SomeProgram

SomeProgram has encountered a problem and needs to close. We are somy
for the inconvenience.

If you were in the middle of something, the information you were working on might be lost.

Please tell Microsoft about this problem.

We have created an emor report that you can send to help us improve SomeProgram. We
will treat this report as confidential and anonymous.

What data does this emor report cortain?
Why should | report to Microsoft 3

: Send Emor Report \h
“T

Systemy czasu rzeczywistego i systemy wbudowane maja inne wymagania i inne
podejscie do traktowania i obstugi btedéw, i powyzsze podejscie jest zwykle nie do
przyjecia. Na przyktad, system sterujacy procesem przemystowym, po napotkaniu
btedu fatalnego, nie moze po prostu zatrzymac procesu, poniewaz mogtoby to by¢
kosztowne i/lub niebezpieczne. Zamiast tego, by¢ moze powinien przej$¢ do trybu
podtrzymania minimalnej funkcjonalnosci, unikajac catkowitej awarii.

Niezawodno$¢ i odpornos$¢ na btedy systeméw informatycznych — wstep



Awarie i katastrofy — perspektywa historyczna

Awarie systemdéw budowanych przez cztowieka, i wynikajacych z nich zagrozen
i/lub katastrof s3 prawdopodobnie tak stare jak ludzkos¢. Przyktadem moga by¢
katastrofy budowlane, takie jak zawalenie sie budynkéw, mostow, itp.

W kontekscie gwattownego przyspieszenia rozwoju przemystu i technologii

w XIX-tym wieku, pojawito sie zainteresowanie zagadnieniami niezawodnosci.

W braku dobrych modeli niezawodnosci i teorii pozwalajacych precyzyjnie obliczac
wytrzymatosc konstrukcji, byty one budowane z duzym zapasem wytrzymatosci —
dwukrotnym, czterokrotnym, a nawet szescio- lub wiece;.

Takie praktyki sa rzadko (lub nigdy) stosowane w inzynierii systeméw
komputerowych.

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — wstep



Therac-25

Therac-25 to produkowana w latach 1980-tych przez Atomic Energy of Canada
Limited seria akceleratorow czastek do leczenia nowotwordéw.

W latach 1985-1987 doszto do serii wypadkéw w czasie leczenia pacjentow, po
ktorych co najmniej piecioro pacjentéw zmarfo na skutek napromieniowania.

Przyczyng awarii byty wyscigi przy inicjalizacji parametrow maszyny, ktore
w pewnych, trudnych do odtworzenia warunkach, nie zostawaty poprawnie
ustawiane. Wczesniejsze serie tych maszyn Therac-6 i Therac-20 posiadaty
zabezpieczenia mechaniczne, ktore jednak wyeliminowano w celu redukcji kosztéw.

B

=
=5
=8
TR

Niezawodno$¢ i odpornos$¢ na btedy systeméw informatycznych — wstep



Ariane 5

4 czerwca 1996 bezzatogowa rakieta

Ariane 5 Europejskiej Agencji Kosmicznej
ESA wystartowata z poligonu w Gujanie
Francuskiej. Po 37 sekundach lotu wykonata
obrot o 90 stopni w niewtasciwym kierunku,
nastepnie wskutek powstatych przeciazen
ulegta destrukcji, po czym wybuchowi
ulegto cafe paliwo z ciektego wodoru.

Koszt tej katastrofy: > 500 milionéw USD.

Jak do tego doszto?

Oprogramowanie sterujace lotem, napisane
w jezyku Ada, przeniesione z wczesniejszej
generacji rakiet Ariane 4, byfo traktowane
jako dobrze przetestowane i niezawodne.
Jednak szereg czynnikow ulegto zmianie,

i miedzy innymi 64-bitowa zmienna
Horizontal Bias zawierajaca kat pochylenia
typu float przy konwersji na 16-bitowy
signed int przekroczyta 65535, i wykazata
bezsensowng wartosc.

Niezawodno$¢ i odpornos$¢ na btedy systeméw informatycznych — wstep 6



Awarie systemow komputerowych

Wymienione awarie zdarzyty sie dawno, ale dotyczg spektakularnych porazek
systemdw komputerowych, ktore zostaty dobrze zbadane i opisane. Whioski z tych
awarii wptynety na metodologie tworzenia oprogramowania przez wiele lat.

Pytanie: czy w dzisiejszych czasach nie zdarzaja sie juz takie awarie?

Oczywiscie, ze sie zdarzaja, a wrecz jest ich tak wiele, ze wiekszo$¢ z nich nie jest
powszechnie znanych. Katastrofy na krétko staja sie sensacja medialng, ale
przyczyny awarii i doktadna historia do nich prowadzaca sg opisywane jedynie

w prasie fachowe;.

Np. podsystem MCAS systemu sterowania samolotéow Boeing 737 MAX ...

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — wstep



Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — wstep



Niezawodnos¢ i odpornosc¢ na btedy

Systemy czasu rzeczywistego i systemy wbudowane maj3 specjalne wymagania
dotyczace niezawodnosci. W celu ich osiggniecia stosuje sie caty zestaw technik:

e minimalizm w specyfikacji wymagan i projektowaniu systemow,

e specjalne metody projektowania i budowy oprogramowania, m.in. uzywanie
bezpiecznych jezykdéw programowania, odpowiednie szkolenie programistow, itp.,

e weryfikacja i testowanie,
e odpornosc na btedy,

o efektywne usuwanie skutkow awarii.

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — wstep 9



NiezawodnosSc¢ a bezpieczenstwo systemow

Niezawodno$¢ jest czasami utozsamiana z bezpieczenstwem systeméw
komputerowych, zwtaszcza w odniesieniu do oprogramowania. Jednak o ile
niezawodno$¢ jest zwykle definiowana w kategoriach realizacji przewidzianych
funkcji systemu, to bezpieczenstwo definiuje sie w kategoriach unikania zagrozen
i wypadkow, niezaleznie od realizacji funkcji systemu i kosztéw.

Technologie pozwalajace osiggac jedng i druga jakosc sa czesto rézne, a wrecz
czesto wymagania niezawodnosci pozostajg w konflikcie z wymaganiami
bezpieczenstwa. Zauwazmy, ze najprostszym sposobem sprawienia aby samolot byt
100%-owo bezpieczny jest by nie wzbijat sie on w ogdle w powietrze, nie miat
silnikdw ani zbiornikow paliwa, ...

Ogolnie postepowanie w razie awarii systemu czesto prowadzi do nastepujacego
kompromisu:

e przejscie do trybu bezpiecznego,
e podtrzymanie minimalnej funkcjonalnosci i wydajnosci.

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — wstep 10



Metryki ztozonosci oprogramowania

Niezawodno$¢ systemu oprogramowania jest zwigzana z jego ztozonoscig. Bardzo
ztozone oprogramowanie jest kosztowne do wytworzenia, i trudno zapewni¢ jego
niezawodnos¢. Stosuje sie rozne miary ztozonosci systemow oprogramowania,
zwane metrykami.

W czasie projektowania nowego systemu oszacowanie ztozonosci pomaga
w przewidywaniu kosztéw, niezbednego naktadu czasu, oraz innych potrzebnych
zasobow.

Po zakonczeniu budowy systemu obliczenie jego metryk i innych charakterystyk
pomaga w zbudowaniu bazy doswiadczen dla przysztych projektéw.

Stosowane metryki ztozonosSci oprogramowania:

e Liczba wierszy programu (Lines of Code, KLOC), czesto liczona z pominieciem
komentarzy, plikow nagtéwkowych, itp. W oczywisty sposéb metryka ta nie

bierze pod uwage ztozonosci samego programu. Ponadto, czesto trudno obliczy¢

ja dla dopiero projektowanego systemu.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — metryki ztozonosci oprogramowania

11



e Ztozonos¢ cyklomatyczna (cyclomatic complexity) C, obliczona na podstawie
schematu blokowego programu (flow graph), gdzie e — liczba krawedzi grafu,
a n — liczba wierzchotkow:

C=e—n-+2

llustracjg ztozonosci cyklomatycznej dla prostych fragmentéw programoéw sa
nastepujace schematy blokowe:

o l/d'
- ~ A (s .
() () /SN SN (e
L1 Fa % . — If 1 — . A*.—,_:% E‘_-\
l ( ‘? KT ; /i J {;’1 _{x’J ( ] ‘ J | )
- N e K L ) 5 J)‘ N AL q \- #__, A
\ ) T 5/ —~ ,& ‘( ‘ff
-= T “”’f ) () J
Sy Mo
seqguerl = f v'u[_.-l. = L ]‘_'| 1 188

Obliczenia ztozonosci cyklomatycznej mozna dokonaé automatycznie, w trakcie
kompilacji programu, lub przez analize kodu zrédfowego.

Niezawodno$¢ i odpornos$¢ na btedy systeméw informatycznych — metryki ztozonosci oprogramowania 12



e Punkty funkcyjne (Function Points) jest innego rodzaju metryka, probujaca
oszacowac interakcje pomiedzy modutami projektowanej aplikacji, oparta
o pewne jej parametry zewnetrzne. Wielka jej zaleta jest mozliwos¢ obliczenia
na etapie projektowania, gdy zaden kod nie jest jeszcze napisany. Wykorzystuje
takie parametry:

— liczba zrédet wejsciowych (1)

— liczba wyjs¢ (O)

— liczba dialogdéw z uzytkownikiem (Q)
— liczba uzywanych plikéw (F')

— liczba zewnetrznych interfejséw (X)

FP =41 +40 +5Q + 10F + 7X

Istniejg bardziej rozbudowane wzory na F'P, bioragce pod uwage dodatkowe
aspekty projektowanej aplikacji.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — metryki ztozonosci oprogramowania

13



e Poprzednie metryki nie uwzgledniaty specyfiki programéw obiektowych.
Definiuje sie metryki podobne do F'P, uwzgledniajace w przypadku aplikacji
obiektowych takie parametry jak:

— wazona liczba metod na klase

— glebokos¢ drzewa dziedziczenia

— liczba potomkow w drzewie dziedziczenia
— zwigzki miedzy klasami

— brak spojnosci miedzy metodami

Nalezy podkresli¢, ze stosowanie metryk ma ograniczone zastosowanie. Na
przyktad, przyktadanie nadmiernej wagi do metryki K LOC' moze doprowadzi¢ do
sytuacji, w ktérej programisci, lub cata firma realizujaca projekt, bedg tworzyli
oprogramowanie o zawyzonej K LOC, w celu wykazania sie i podniesienia rangi
swojego produktu, z oczywistg szkoda dla projektu.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — metryki ztozonosci oprogramowania

14



Terminologia niezawodnosci

Defektem (defect, fault) nazywamy wade programu, btedny fragment kodu, np.
brak sprawdzenia wielkosci bufora przed wczytaniem do niego danych nieznane;
wielkosci. Istnienie defektu w programie nie oznacza, ze btedny kod zostanie
kiedykolwiek wykonany, gdy bedzie wykonany to czy nastapi sytuacja btedna (np.
dane przekrocza rozmiar bufora), a gdy wystapi, to czy spowoduje to jakiekolwiek
negatywne konsekwencje.

Btedem (error) nazywamy sytuacje, gdy program znajdzie sie w stanie réznym niz
stan pozadany i poprawny. Np. przypadek odwotania sie programu do adresu spoza
dozwolonego zakresu jest btedem. Btad taki moze byc jednak zauwazony przez
system, ktory moze wystaé programowi sygnat. Jesli program jest wyposazony

w handler obstugujacy sygnat danego typu, to program ma szanse poprawnego
zachowania sie w przypadku takiego bfedu, i podjecia wtasciwych dziatan.

Awarig (failure) nazywamy sytuacje, kiedy program nie jest w stanie realizowac
swojej funkcji wskutek wystapienia btedu.

Niezawodnoscig bedziemy nazywaé zdolno$¢ programu takiego radzenia sobie
z defektami, a takze btedami, ktére nie dopuszcza do wystgpienia awarii.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — terminologia niezawodnosci 15



Btedy

Btedy mozna podzieli¢ na dwie istotne kategorie:

e bfedy powtarzalne — takie, dla ktérych znana jest przynajmniej jedna Sciezka
prowadzaca do ich wystapienia,

e btedy ulotne — (transient error) to takie, dla ktérego nie mozna precyzyjnie
okresli¢ warunkdéw jego wystapienia, a zatem nie ma mozliwosci wywotania go
w prosty i powtarzalny sposob.

Znaczenie powyzszego rozréznienia btedow jest takie, ze procedury zwigzane
z wykrywaniem btedéw sg inne dla tych kategorii.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — terminologia niezawodnosci 16



Zapobieganie defektom

Zapobieganie defektom (fault prevention) sprowadza sie do dwdch grup procedur:

e unikanie defektéw (fault avoidance)

— rygorystyczna i/lub formalna specyfikacja wymagan

— zastosowanie sprawdzonych metod projektowania

— uzycie jezykow z mechanizmami wspierajagcymi abstrakcje, weryfikacje, itp.
— uzycie narzedzi inzynierii oprogramowania

e usuwanie defektéw (fault removal)

— weryfikacja
— walidacja
— testowanie

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — terminologia niezawodnosci

17



Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — terminologia niezawodnosci

18



Weryfikacja, walidacja, i testowanie

Weryfikacja jest procesem realizowanym na wielu etapach cyklu rozwoju
oprogramowania, w celu potwierdzenia poprawnosci i zgodnosci ze specyfikacja
danego modutu, i catego systemu. Do weryfikacji mozna wykorzystaé wiele
narzedzi, w tym narzedzi analizy formalne;j.

Walidacja jest procesem analizy ukonczonego produktu, lub prototypu, dla
stwierdzenia czy jest zgodny z wszystkimi wymaganiami, w tym réwniez czy
formalna specyfikacja jest zgodna z intencja i oczekiwaniami uzytkownika, oraz czy
uruchomiony w srodowisku produkcyjnym program realizuje swoje funkcje.

Podstawowym narzedziem walidacji jest testowanie.

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — weryfikacja, walidacja, i testowanie 19



Testowanie

Testowanie jest procesem powtarzalnego uruchamiania programu z okreslonymi

danymi wejsciowymi, w celu stwierdzenia, czy program produkuje wtasciwe sygnaty
wyjsciowe.

Jakkolwiek w trakcie testowania ujawniajg sie defekty i bfedy, ktére powinny
nastepnie by¢ korygowane, wykrywanie btedéw i poprawianie defektéw nie jest
jedynym celem testowania. Ogélnie, testowanie nie jest w stanie ani wykryc
wszystkich btedow, i tym bardziej defektéw, ani potwierdzi¢ ich braku. Na odwrét,
za pomocg testowania mozna jedynie wykrywac istniejgce btedy. Natomiast
dodatkows rolg testowania jest wytworzenie zaufania do programu, jesli zachowuje
sie on poprawnie w dobrze zaprojektowanych, wszechstronnych testach.

Niezawodno$¢ i odpornos$¢ na btedy systeméw informatycznych — weryfikacja, walidacja, i testowanie 20



Testowanie oprogramowania

Testowanie moze przeanalizowac jedynie matg czesc catej przestrzeni mozliwych
danych wejsciowych. Powinno ono byc¢ zatem tak przeprowadzone, aby jego wyniki
w przekonujacy sposob potwierdzity hipoteze, ze system bedzie dziatat poprawnie
dla wszystkich danych. Metody wyboru danych wejsciowych:

e wybdr losowy,

e pokrycie wymagan — dla kazdego z wymagan zestawy danych potwierdzajace
spetnienie danego wymagania,

e testowanie white-box — realizowane jest pokrycie wedtug jakiego$ kryterium
wynikajacego z analizy programu, np. przejscie wszystkich rozgatezien
logicznych w programie,

e wybor oparty na modelu — dane s3 generowane z modelu systemu pracujacego
w pofaczeniu z modelem obiektu fizycznego,

e profil operacyjny — baza do wyboru danych testowych jest profil operacyjny,

e szczytowe obcigzenie — generowane jest ekstremalne obcigzenie systemu,

i w takich warunkach sprawdzane spetnienie wymagan czasowych,

e przypadek najgorszego czasu wykonania (WCET) — dane generowane na
podstawie analizy kodu w kierunku WCET,

e mechanizmy tolerancji defektéw — testowanie z zastosowaniem ,wstrzykiwania
defektow”,

e systemy cykliczne — testowanie w zakresie jednego petnego cyklu.

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — weryfikacja, walidacja, i testowanie 21



Testowanie systemoOw czasu rzeczywistego

Testowanie systemow czasu rzeczywistego jest specjalnym przypadkiem. Te systemy
muszg reagowaé w przewidzianym czasie na rézne mozliwe zdarzenia, ktorych
doktadnej sekwencji czasowej nie sposob przewidziec.

/ tego powodu w zakresie tworzenia systemdw czasu rzeczywistego i systeméw
wbudowanych, testowanie ma ograniczone znaczenie. Prace w zakresie tworzenia
takich systemow i narzedzi do ich budowy koncentrujg sie na metodach formalne;
weryfikacji oprogramowania.

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — weryfikacja, walidacja, i testowanie 22



Testowanie sprzetu

Elektronika podlega procesom starzenia, efektom przepieé, promieni kosmicznych,
korozji, wibracji, itp., i moze degradowac sie i ulegac uszkodzeniom. W systemach
pracujacych 24x7 przez dtugi okres czasu ma sens regularne testowanie sprzetu.
Testy powinny by¢ uruchamiane okresowo, w czasie mniejszego obcigzenia systemu.

e testowanie CPU — starannie przygotowany zestaw testowy powinien sprawdzaé
poprawnosc pracy procesora we wszystkich trybach adresowania

e testowanie pamieci RAM — w przypadku pamieci ze sprzetowa kontrolg
parzystosci lub korekcyjnymi kodami Hamminga (ECC/EDC) ewentualne btedy
sg korygowane w czasie odczytu; jednak nie powoduje to poprawienia zawartosci
pamieci, dlatego stosuje sie szorowanie pamieci (memory scrubbing),
polegajace na cyklicznym odczytywaniu i powrotnym zapisywaniu wszystkich
komorek pamieci, wymuszajace zapis poprawionej wartosci; oczywiscie nie
powoduje to naprawienia permanentnie uszkodzonych komorek pamieci

w przypadku uzycia pamieci bez sprzetowego wykrywania i korygowania btedéw
stosuje sie cykliczne testowanie pamieci metoda zapisu i kontrolnego odczytu
starannie wybranych wzorcow bitowych, co pozwala na wykrycie zaréwno
przepalonych bitow jak i przestuchéw miedzy Sciezkami sygnatowymi

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — weryfikacja, walidacja, i testowanie 23



e testowanie pamieci ROM — zawartos¢ pamieci ROM mozna testowac za
pomoca obliczonych w czasie instalacji i konfiguracji systemu sum kontrolnych
albo — lepiej — kodow CRC, pozwalajacych wykryé wszystkie btedy 1-bitowe
i praktycznie wszystkie btedy wielobitowe

e testowanie innych urzadzen — urzadzenia takie jak przetworniki A/D, D/A,
multipleksery i kanaty wejécia/wyjScia moga mie¢ wbudowane moduty testowe
sprawdzajace i zapisujace stan urzadzenia do pamieci za pomocg DMA

Niezawodnos$¢ i odpornos¢ na btedy systeméw informatycznych — weryfikacja, walidacja, i testowanie

24



Odpornos¢ na btedy

Podstawa zbudowania odpornosci systemu na btedy (software fault tolerance) jest
sformufowanie hipotezy defektow okreslajacej jakie rodzaje defektow maja byc

tolerowane przez system. Hipoteza dzieli przestrzen standw systemu na trzy regiony:

States covered
by the fault

Fault Tolerance b
Mechanisms YP ‘
NGU
Strategy
Rare Faults
States not covered
. by the fault
hypothesis

Dodatkowo: strategia NGU (Never Give Up — Nigdy Nie Rezygnuj).

Niezawodno$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy

25



Redundancja

Redundancja (nadmiarowo$¢) jest jedng z gtéwnych technik budowania
odpornosci na bfedy, zarowno w sprzecie jak i oprogramowaniu. W oczywisty
sposob, poniewaz prowadzi ona do budowy bardziej ztozonych systeméw, moze
sama w sobie wprowadzac ryzyko dalszych defektow i zwigzanych z nimi awarii.

Redundancja statyczna (maskujaca) jest wbudowana wewnatrz systemu, ktéry
usituje dzieki niej utrzymac poprawne dziatanie maskujac wystepujace btedy. Jedna
z podstawowych technik jest TMR ( Triple Modular Redundancy), polegajaca na
zastosowaniu trzech identycznych elementow, i uktadu gtosowania, ktéry
porownuje sygnaty na wyjsciach wszystkich elementéw, i jesli jeden rozni sie od
dwoch pozostatych to na wyjscie uktadu kierowany jest sygnat wyjsciowy wybrany
wiekszosciowo. TMR ma gtéwnie zastosowanie do uodpornianie na btedy sprzetu.

Redundancja dynamiczna polega na wyposazeniu systemu w element
oceniajacy czy nie wystepuja btedy. W przypadku wykrycia btedu, uktad sygnalizuje
to, pozostawiajac jednak elementom zewnetrznym podjecie odpowiednich dziatan.
Redundancja dynamiczna jest zatem metodg wykrywania btedéw. Przyktadami
moga byC bity parzystosci pamieci, albo sumy kontrolne w pakietach komunikacji.

Niezawodno$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 26



Programowanie N-wersji

Zastosowanie redundancji typu TMR opiera sie na zatozeniu, ze btad powstanie
wewnatrz jednego z uktadow, i bedzie to btad przypadkowy, albo wynikajacy ze
starzenia sie sprzetu. Poniewaz systemy programowe nie starzeja sie, a bfedy
przypadkowe nie s3 najwazniejszymi btedami, na ktére chcemy uodporni¢ system,
zatem podejscie TMR ma ograniczone zastosowanie do systemow oprogramowania.

Zamiast tego, budowanie odpornosci koncentruje sie na mozliwych btedach
programowych. Metoda zwana programowaniem N-wersji (/N-version
programming) polega na stworzeniu N funkcjonalnie réwnowaznych programéw
odpowiadajacych jednej specyfikacji. Programy powinny by¢ budowane przez N
réznych programistow (lub grup), bez komunikowania sie miedzy soba. Programy
nastepnie wykonywane sg jednoczesnie w systemie, i dodatkowy proces drivera
poroéwnuje uzyskane wyniki i wybiera jeden metoda gtosowania.

Skutecznos¢ tej metody opiera sie na zatozeniu, ze programy stworzone niezaleznie,
majg rozne defekty, i bedg powodowaty bfedy niezaleznie od siebie. To zatozenie
moze byC niestuszne, jesli np. programy zostaty napisane w tym samym jezyku
programowania, i skompilowane tym samym kompilatorem i/lub z tymi samymi
bibliotekami.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 27



Dublowanie procesow

Technikg znacznie prostszg niz programowanie N-wersji jest dublowanie
procesow. Ma ona zastosowanie do uodporniania systemu na btedy ulotne.

Metoda polega na tworzeniu nadmiarowego podprocesu do wykonywania obliczen,
a w przypadku gdyby napotkat on na jakis btad, zamyka sie on zwracajac
odpowiedni kod bfedu. Proces nadzorujacy stwierdza wystapienie btedu, i tworzy
identyczny proces do ponownego wykonania tych samych obliczen.

inicjalizacja S et . - backup: ) e
oczekiwanie na zamknigcie procesu giownego oczekiwanie na zamkniecie procesu giéwnego
F
fork() fork()
v v
proces gtowny: , proces gtowny:
przetwarzanie zgdan klienta = przetwarzanie zgdan klienta 2 ipile

awaria

zZadania klienta Zadania klienta

X A

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy

28



Dublowanie proceséw moze byc¢ stosowane wielokrotnie na réznych poziomach. Na
przykfad procedura moze najpierw inicjalizowa¢ srodowisko obliczen, pozyskiwaé
dane, itp., a dopiero potem inicjowaé zasadnicze obliczenia. Zaréwno pierwsza faza
jak i druga moga podlegac oddzielnemu dublowaniu. W oczywisty sposob,
dublowanie drugiej fazy jest mniej uciazliwe i nie powoduje konsekwenc;ji
wykraczajacej poza program.

Zastosowanie tego podejscia jest szczegolnie fatwe i atrakcyjne w systemach
Unikso-podobnych, wykorzystujacych model tworzenia procesu przez klonowanie

funkcja fork.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 29



Punkty kontrolne

Metoda polega ona na tworzeniu w programie punktow bezpiecznego wycofania sie.
Jezeli program w trakcie pracy sam wykryje btad, to znaczy jakis niepoprawny stan,
to najlepiej bytoby cofnac sie o kilka krokdéw, kiedy stan byt jeszcze poprawny,

| powtdrzy¢é mata porcje obliczen.

Aby to byto mozliwe, nalezy w trakcie pracy okresowo, po zweryfikowaniu, ze stan
programu jest poprawny, zapamieta¢ go w sposob umozliwiajacy cofniecie
programu do tego stanu. W ten sposob program tworzy punkt kontrolny. Po
wykryciu btedu, program cofa sie do ostatniego takiego punktu, i wznawia
obliczenia tak jakby nic sie nie stato. Zatozeniem tej metody jest, ze ponowne
wykonanie pewnej fazy obliczen da tym razem inne wyniki. Zatozenie jest poprawne
jesli btad byt wywotany czynnikami zewnetrznymi, albo jaka$ kombinacja
mikrostanéw programu, ktora nie zostanie powtorzona.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 30



Bloki wznawiania (recovery blocks)

Metoda blokéw wznawiania wykorzystuje wiele (kilka) wersji zwyktych blokéw
programowych uzupetnionych o punkt wznawiania umieszczony na poczatku
bloku, i test akceptowalnosci na koncu. Po wykonaniu bloku wykonywany jest
test dla stwierdzenia czy system znajduje sie w akceptowalnym stanie. Jesli nie, to
wykonanie programu wraca do punktu wznawiania na wejsciu do bloku.

Po wznowieniu obliczen, program uruchamia alternatywny modut obliczeniowy.
(Wznowienie obliczen z uzyciem modutu podstawowego pozwolitoby na
zabezpieczeniu programu jedynie przed btedami ulotnymi.) Gdyby zawiodty
obliczenia wszystkich modutow alternatywnych, to sterowanie wraca do modutu
nadrzednego, ktéry tez moze mieC swoéj blok wznawiania.

Metoda blokow wznawiania jest popularng technika, jednak jej zastosowanie
w systemach czasu rzeczywistego jest ograniczone do przypadkow, w ktérych
ograniczenia czasowe pozwalajg na powtarzanie obliczen, i wynik uzyskany po
dodatkowym naktadzie obliczen jest nadal przydatny.

Zastosowanie tego podejscia w systemach Unikso-podobnych, wykorzystuje na ogot
funkcje setjmp i longjmp do zachowywania stanu i wznawiania obliczen.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 31



Odmtadzanie

Metoda odmtadzania proceséw opiera sie na zafozeniu, ze stan poczatkowy po
uruchomieniu jest zawsze najlepiej przetestowany, i przez jakis czas po starcie
system pracuje bezawaryjnie.

Stan poprawny

starzenie sie procesu

odmtadzanie

Stan bledny

uefektywnienie btedu
Metoda jest ograniczona przez tzw. stan twardy systemu, to jest stan po
inicjalizacji, komunikacji z urzadzeniami zewnetrznymi, itp. Ten stan zwykle nie

powinien by¢ utracony w procesie odmtadzania. Jednak idea odmtadzania polega
na porzuceniu poprzedniego stanu, i zainicjowaniu go od nowal!!

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 32



Mikro restarty

Restart systemu moze byc srodkiem zapobiegania btedom, albo metoda
przywrécenia systemu do stanu poprawnego. O ile jednak restart catego systemu
czesto powoduje zaburzenie lub utrudnienie w pracy, to metodg moze by¢ podziat
systemu na szereg mniejszych elementéw, ktére mozna restartowac niezaleznie od
innych.

Zauwazmy, ze w niektorych systemach, jak Windows, po operacjach takich jak
instalacja lub reinstalacja jakiego$ programu wymagany jest restart catego systemu.
Wynika to z faktu, ze bezposrednio po starcie system konfiguruje sobie cate
dostepne oprogramowanie. Gdyby te warstwe konfiguracji oprogramowania wydzieli¢
jako osobny podsystem, ktéry mogtby byc restartowany samodzielnie, nie bytoby
koniecznosci restartu catego systemu. Metoda ta jest szeroko stosowana w innych
systemach operacyjnych.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 33



Poprawianie stanu

Poprawianie stanu polega na podjeciu dziatan doraznych, w przypadku wykrycia
nieprawidtowosci. Jednak zamiast poszukiwania jej zrodet, i podjecia proby
radykalnej naprawy sytuacji, likwidowane s3 tylko objawy.

Na przykfad, wiedzac, ze zmienna powinna zawieraC warto$¢ temperatury
zmierzonej przez czujnik, i ze powinna ona zawierac sie w przedziale 0-70° moduft
poprawiania stanu mogtby, po wykryciu wartosci 95 napisac ja wartoscig 70, albo
po wykryciu wartosci —13 nadpisac jg wartoscig 0. Inaczej mowiac, zauwazywszy,
ze wartosC jest niepoprawna, ustawiamy j3 na poprawng, wybrang tak, by

z pewnym prawdopodobienstwem byta zblizona do prawidtowego stanu systemu.

Jest to wiec rodzaj objawowego leczenia choroby. Zamiast podawac antybiotyk,
podajemy lekarstwo zbijajgce goraczke. Jak wiemy, takie leczenie stosuje sie, i jest
to stuszna metoda, jesli nic innego w danej chwili nie mozna zrobi¢, a poprawienie
stanu moze spowodowac niedopuszczenie do natychmiastowe] awarii, i dalsze
dziatanie systemu, przynajmniej przez jakis czas.

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 34



Watchdog

W systemach czasu rzeczywistego procedura restartu po
wystapieniu i wykryciu awarii jest czesto zautomatyzowana
| rutynowo implementowana. Jedng ze stosowanych metod
jest tzw. watchdog, czyli system monitorujacy prace
systemu, i wykonujacy fizyczny restart po wykryciu zbyt
dtugiego czasu wykonywania sie programu.

Watchdog moze (powinien) by¢ zrealizowany sprzetowo

i niezalezny od reszty systemu, co daje gwarancje jego
poprawnej pracy nawet jesli awaria systemu wyfacza z akg;ji
inne jego mechanizmy odpornosciowe.

Po uruchomieniu, watchdog cyklicznie uruchamia timer na
zaprogramowany odcinek czasu (np. 100 milisekund), po
ktorym inicjuje restart systemu, o ile sam nie zostanie
zresetowany zaprogramowanym kodem wpisanym na wejscie.
Restart systemu nastepuje rowniez w przypadku zaniku
zasilania watchdoga przez system.

Niezawodno$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy 35



Bibliografia

Algirdas Avizienis, A., et al., Basic concepts and taxonomy of dependable and
secure computing, |EEE Trans. on Dependable and Secure Computing, Vol.1(1),
pp.11-33, 2004

Niezawodnos$¢ i odporno$¢ na btedy systeméw informatycznych — odporno$é na btedy

36



