
Niezawodność i odporność na błędy systemów

informatycznych

Witold Paluszyński
Katedra Cybernetyki i Robotyki

Wydział Elektroniki, Politechnika Wrocławska
http://www.kcir.pwr.edu.pl/~witold/

2011–2020
Ten utwór jest dostępny na licencji
Creative Commons Uznanie autorstwa-
Na tych samych warunkach 3.0 Unported

Utwór udostępniany na licencji Creative Commons: uznanie autorstwa, na tych
samych warunkach. Udziela się zezwolenia do kopiowania, rozpowszechniania i/lub
modyfikacji treści utworu zgodnie z zasadami w/w licencji opublikowanej przez
Creative Commons. Licencja wymaga podania oryginalnego autora utworu,
a dystrybucja materiałów pochodnych może odbywać się tylko na tych samych
warunkach (nie można zastrzec, w jakikolwiek sposób ograniczyć, ani rozszerzyć
praw do nich).





Obsługa błędów

Jeśli „zwykły” program napotka błąd, którego nie potrafi rozwiązać albo naprawić,
to typowym i normalnie stosowanym zachowaniem programu jest zakończenie
pracy, z możliwie starannym i dokładnym poinformowaniem użytkownika (jeśli taki
istnieje) o powstaniu błędu i jego okolicznościach.

Systemy czasu rzeczywistego i systemy wbudowane mają inne wymagania i inne
podejście do traktowania i obsługi błędów, i powyższe podejście jest zwykle nie do
przyjęcia. Na przykład, system sterujący procesem przemysłowym, po napotkaniu
błędu fatalnego, nie może po prostu zatrzymać procesu, ponieważ mogłoby to być
kosztowne i/lub niebezpieczne. Zamiast tego, być może powinien przejść do trybu
podtrzymania minimalnej funkcjonalności, unikając całkowitej awarii.

Niezawodność i odporność na błędy systemów informatycznych — wstęp 3



Awarie i katastrofy — perspektywa historyczna

Awarie systemów budowanych przez człowieka, i wynikających z nich zagrożeń
i/lub katastrof są prawdopodobnie tak stare jak ludzkość. Przykładem mogą być
katastrofy budowlane, takie jak zawalenie się budynków, mostów, itp.

W kontekście gwałtownego przyspieszenia rozwoju przemysłu i technologii
w XIX-tym wieku, pojawiło się zainteresowanie zagadnieniami niezawodności.
W braku dobrych modeli niezawodności i teorii pozwalających precyzyjnie obliczać
wytrzymałość konstrukcji, były one budowane z dużym zapasem wytrzymałości —
dwukrotnym, czterokrotnym, a nawet sześcio- lub więcej.

Takie praktyki są rzadko (lub nigdy) stosowane w inżynierii systemów
komputerowych.

Niezawodność i odporność na błędy systemów informatycznych — wstęp 4



Therac-25

Therac-25 to produkowana w latach 1980-tych przez Atomic Energy of Canada
Limited seria akceleratorów cząstek do leczenia nowotworów.

W latach 1985-1987 doszło do serii wypadków w czasie leczenia pacjentów, po
których co najmniej pięcioro pacjentów zmarło na skutek napromieniowania.

Przyczyną awarii były wyścigi przy inicjalizacji parametrów maszyny, które
w pewnych, trudnych do odtworzenia warunkach, nie zostawały poprawnie
ustawiane. Wcześniejsze serie tych maszyn Therac-6 i Therac-20 posiadały
zabezpieczenia mechaniczne, które jednak wyeliminowano w celu redukcji kosztów.

Niezawodność i odporność na błędy systemów informatycznych — wstęp 5



Ariane 5

4 czerwca 1996 bezzałogowa rakieta
Ariane 5 Europejskiej Agencji Kosmicznej
ESA wystartowała z poligonu w Gujanie
Francuskiej. Po 37 sekundach lotu wykonała
obrót o 90 stopni w niewłaściwym kierunku,
następnie wskutek powstałych przeciążeń
uległa destrukcji, po czym wybuchowi
uległo całe paliwo z ciekłego wodoru.

Koszt tej katastrofy: ≫ 500 milionów USD.

Jak do tego doszło?
Oprogramowanie sterujące lotem, napisane
w języku Ada, przeniesione z wcześniejszej
generacji rakiet Ariane 4, było traktowane
jako dobrze przetestowane i niezawodne.
Jednak szereg czynników uległo zmianie,
i między innymi 64-bitowa zmienna
Horizontal Bias zawierająca kąt pochylenia
typu float przy konwersji na 16-bitowy
signed int przekroczyła 65535, i wykazała
bezsensowną wartość.

Niezawodność i odporność na błędy systemów informatycznych — wstęp 6



Awarie systemów komputerowych

Wymienione awarie zdarzyły się dawno, ale dotyczą spektakularnych porażek
systemów komputerowych, które zostały dobrze zbadane i opisane. Wnioski z tych
awarii wpłynęły na metodologię tworzenia oprogramowania przez wiele lat.

Pytanie: czy w dzisiejszych czasach nie zdarzają się już takie awarie?

Oczywiście, że się zdarzają, a wręcz jest ich tak wiele, że większość z nich nie jest
powszechnie znanych. Katastrofy na krótko stają się sensacją medialną, ale
przyczyny awarii i dokładna historia do nich prowadząca są opisywane jedynie
w prasie fachowej.

Np. podsystem MCAS systemu sterowania samolotów Boeing 737 MAX ...

Niezawodność i odporność na błędy systemów informatycznych — wstęp 7



Niezawodność i odporność na błędy systemów informatycznych — wstęp 8



Niezawodność i odporność na błędy

Systemy czasu rzeczywistego i systemy wbudowane mają specjalne wymagania
dotyczące niezawodności. W celu ich osiągnięcia stosuje się cały zestaw technik:

• minimalizm w specyfikacji wymagań i projektowaniu systemów,

• specjalne metody projektowania i budowy oprogramowania, m.in. używanie
bezpiecznych języków programowania, odpowiednie szkolenie programistów, itp.,

• weryfikacja i testowanie,

• odporność na błędy,

• efektywne usuwanie skutków awarii.

Niezawodność i odporność na błędy systemów informatycznych — wstęp 9



Niezawodność a bezpieczeństwo systemów

Niezawodność jest czasami utożsamiana z bezpieczeństwem systemów
komputerowych, zwłaszcza w odniesieniu do oprogramowania. Jednak o ile
niezawodność jest zwykle definiowana w kategoriach realizacji przewidzianych
funkcji systemu, to bezpieczeństwo definiuje się w kategoriach unikania zagrożeń
i wypadków, niezależnie od realizacji funkcji systemu i kosztów.

Technologie pozwalające osiągać jedną i drugą jakość są często różne, a wręcz
często wymagania niezawodności pozostają w konflikcie z wymaganiami
bezpieczeństwa. Zauważmy, że najprostszym sposobem sprawienia aby samolot był
100%-owo bezpieczny jest by nie wzbijał się on w ogóle w powietrze, nie miał
silników ani zbiorników paliwa, ...

Ogólnie postępowanie w razie awarii systemu często prowadzi do następującego
kompromisu:

• przejście do trybu bezpiecznego,
• podtrzymanie minimalnej funkcjonalności i wydajności.

Niezawodność i odporność na błędy systemów informatycznych — wstęp 10



Metryki złożoności oprogramowania

Niezawodność systemu oprogramowania jest związana z jego złożonością. Bardzo
złożone oprogramowanie jest kosztowne do wytworzenia, i trudno zapewnić jego
niezawodność. Stosuje się różne miary złożoności systemów oprogramowania,
zwane metrykami.

W czasie projektowania nowego systemu oszacowanie złożoności pomaga
w przewidywaniu kosztów, niezbędnego nakładu czasu, oraz innych potrzebnych
zasobów.

Po zakończeniu budowy systemu obliczenie jego metryk i innych charakterystyk
pomaga w zbudowaniu bazy doświadczeń dla przyszłych projektów.

Stosowane metryki złożoności oprogramowania:

• Liczba wierszy programu (Lines of Code, KLOC), często liczona z pominięciem
komentarzy, plików nagłówkowych, itp. W oczywisty sposób metryka ta nie
bierze pod uwagę złożoności samego programu. Ponadto, często trudno obliczyć
ją dla dopiero projektowanego systemu.

Niezawodność i odporność na błędy systemów informatycznych — metryki złożoności oprogramowania 11



• Złożoność cyklomatyczna (cyclomatic complexity) C, obliczona na podstawie
schematu blokowego programu (flow graph), gdzie e — liczba krawędzi grafu,
a n — liczba wierzchołków:

C = e − n + 2

Ilustracją złożoności cyklomatycznej dla prostych fragmentów programów są
następujące schematy blokowe:

Obliczenia złożoności cyklomatycznej można dokonać automatycznie, w trakcie
kompilacji programu, lub przez analizę kodu źródłowego.

Niezawodność i odporność na błędy systemów informatycznych — metryki złożoności oprogramowania 12



• Punkty funkcyjne (Function Points) jest innego rodzaju metryką, próbującą
oszacować interakcje pomiędzy modułami projektowanej aplikacji, opartą
o pewne jej parametry zewnętrzne. Wielką jej zaletą jest możliwość obliczenia
na etapie projektowania, gdy żaden kod nie jest jeszcze napisany. Wykorzystuje
takie parametry:

– liczba źródeł wejściowych (I)
– liczba wyjść (O)
– liczba dialogów z użytkownikiem (Q)
– liczba używanych plików (F )
– liczba zewnętrznych interfejsów (X)

FP = 4I + 4O + 5Q + 10F + 7X

Istnieją bardziej rozbudowane wzory na FP , biorące pod uwagę dodatkowe
aspekty projektowanej aplikacji.

Niezawodność i odporność na błędy systemów informatycznych — metryki złożoności oprogramowania 13



• Poprzednie metryki nie uwzględniały specyfiki programów obiektowych.
Definiuje się metryki podobne do FP , uwzględniające w przypadku aplikacji
obiektowych takie parametry jak:

– ważona liczba metod na klasę
– głębokość drzewa dziedziczenia
– liczba potomków w drzewie dziedziczenia
– związki między klasami
– brak spójności między metodami

Należy podkreślić, że stosowanie metryk ma ograniczone zastosowanie. Na
przykład, przykładanie nadmiernej wagi do metryki KLOC może doprowadzić do
sytuacji, w której programiści, lub cała firma realizująca projekt, będą tworzyli
oprogramowanie o zawyżonej KLOC, w celu wykazania się i podniesienia rangi
swojego produktu, z oczywistą szkodą dla projektu.

Niezawodność i odporność na błędy systemów informatycznych — metryki złożoności oprogramowania 14



Terminologia niezawodności

Defektem (defect, fault) nazywamy wadę programu, błędny fragment kodu, np.
brak sprawdzenia wielkości bufora przed wczytaniem do niego danych nieznanej
wielkości. Istnienie defektu w programie nie oznacza, że błędny kod zostanie
kiedykolwiek wykonany, gdy będzie wykonany to czy nastąpi sytuacja błędna (np.
dane przekroczą rozmiar bufora), a gdy wystąpi, to czy spowoduje to jakiekolwiek
negatywne konsekwencje.

Błędem (error) nazywamy sytuację, gdy program znajdzie się w stanie różnym niż
stan pożądany i poprawny. Np. przypadek odwołania się programu do adresu spoza
dozwolonego zakresu jest błędem. Błąd taki może być jednak zauważony przez
system, który może wysłać programowi sygnał. Jeśli program jest wyposażony
w handler obsługujący sygnał danego typu, to program ma szansę poprawnego
zachowania się w przypadku takiego błędu, i podjęcia właściwych działań.

Awarią (failure) nazywamy sytuację, kiedy program nie jest w stanie realizować
swojej funkcji wskutek wystąpienia błędu.

Niezawodnością będziemy nazywać zdolność programu takiego radzenia sobie
z defektami, a także błędami, które nie dopuszcza do wystąpienia awarii.

Niezawodność i odporność na błędy systemów informatycznych — terminologia niezawodności 15



Błędy

Błędy można podzielić na dwie istotne kategorie:

• błędy powtarzalne — takie, dla których znana jest przynajmniej jedna ścieżka
prowadząca do ich wystąpienia,

• błędy ulotne — (transient error) to takie, dla którego nie można precyzyjnie
określić warunków jego wystąpienia, a zatem nie ma możliwości wywołania go
w prosty i powtarzalny sposób.

Znaczenie powyższego rozróżnienia błędów jest takie, że procedury związane
z wykrywaniem błędów są inne dla tych kategorii.

Niezawodność i odporność na błędy systemów informatycznych — terminologia niezawodności 16



Zapobieganie defektom

Zapobieganie defektom (fault prevention) sprowadza się do dwóch grup procedur:

• unikanie defektów (fault avoidance)

– rygorystyczna i/lub formalna specyfikacja wymagań
– zastosowanie sprawdzonych metod projektowania
– użycie języków z mechanizmami wspierającymi abstrakcje, weryfikację, itp.
– użycie narzędzi inżynierii oprogramowania

• usuwanie defektów (fault removal)

– weryfikacja
– walidacja
– testowanie

Niezawodność i odporność na błędy systemów informatycznych — terminologia niezawodności 17



Niezawodność i odporność na błędy systemów informatycznych — terminologia niezawodności 18



Weryfikacja, walidacja, i testowanie

Weryfikacja jest procesem realizowanym na wielu etapach cyklu rozwoju
oprogramowania, w celu potwierdzenia poprawności i zgodności ze specyfikacją
danego modułu, i całego systemu. Do weryfikacji można wykorzystać wiele
narzędzi, w tym narzędzi analizy formalnej.

Walidacja jest procesem analizy ukończonego produktu, lub prototypu, dla
stwierdzenia czy jest zgodny z wszystkimi wymaganiami, w tym również czy
formalna specyfikacja jest zgodna z intencją i oczekiwaniami użytkownika, oraz czy
uruchomiony w środowisku produkcyjnym program realizuje swoje funkcje.

Podstawowym narzędziem walidacji jest testowanie.

Niezawodność i odporność na błędy systemów informatycznych — weryfikacja, walidacja, i testowanie 19



Testowanie

Testowanie jest procesem powtarzalnego uruchamiania programu z określonymi
danymi wejściowymi, w celu stwierdzenia, czy program produkuje właściwe sygnały
wyjściowe.

Jakkolwiek w trakcie testowania ujawniają się defekty i błędy, które powinny
następnie być korygowane, wykrywanie błędów i poprawianie defektów nie jest
jedynym celem testowania. Ogólnie, testowanie nie jest w stanie ani wykryć
wszystkich błędów, i tym bardziej defektów, ani potwierdzić ich braku. Na odwrót,
za pomocą testowania można jedynie wykrywać istniejące błędy. Natomiast
dodatkową rolą testowania jest wytworzenie zaufania do programu, jeśli zachowuje
się on poprawnie w dobrze zaprojektowanych, wszechstronnych testach.

Niezawodność i odporność na błędy systemów informatycznych — weryfikacja, walidacja, i testowanie 20



Testowanie oprogramowania

Testowanie może przeanalizować jedynie małą część całej przestrzeni możliwych
danych wejściowych. Powinno ono być zatem tak przeprowadzone, aby jego wyniki
w przekonujący sposób potwierdziły hipotezę, że system będzie działał poprawnie
dla wszystkich danych. Metody wyboru danych wejściowych:

• wybór losowy,
• pokrycie wymagań — dla każdego z wymagań zestawy danych potwierdzające

spełnienie danego wymagania,
• testowanie white-box — realizowane jest pokrycie według jakiegoś kryterium

wynikającego z analizy programu, np. przejście wszystkich rozgałęzień
logicznych w programie,

• wybór oparty na modelu — dane są generowane z modelu systemu pracującego
w połączeniu z modelem obiektu fizycznego,

• profil operacyjny — bazą do wyboru danych testowych jest profil operacyjny,
• szczytowe obciążenie — generowane jest ekstremalne obciążenie systemu,

i w takich warunkach sprawdzane spełnienie wymagań czasowych,
• przypadek najgorszego czasu wykonania (WCET) — dane generowane na

podstawie analizy kodu w kierunku WCET,
• mechanizmy tolerancji defektów — testowanie z zastosowaniem „wstrzykiwania

defektów”,
• systemy cykliczne — testowanie w zakresie jednego pełnego cyklu.

Niezawodność i odporność na błędy systemów informatycznych — weryfikacja, walidacja, i testowanie 21



Testowanie systemów czasu rzeczywistego

Testowanie systemów czasu rzeczywistego jest specjalnym przypadkiem. Te systemy
muszą reagować w przewidzianym czasie na różne możliwe zdarzenia, których
dokładnej sekwencji czasowej nie sposób przewidzieć.

Z tego powodu w zakresie tworzenia systemów czasu rzeczywistego i systemów
wbudowanych, testowanie ma ograniczone znaczenie. Prace w zakresie tworzenia
takich systemów i narzędzi do ich budowy koncentrują się na metodach formalnej
weryfikacji oprogramowania.

Niezawodność i odporność na błędy systemów informatycznych — weryfikacja, walidacja, i testowanie 22



Testowanie sprzętu

Elektronika podlega procesom starzenia, efektom przepięć, promieni kosmicznych,
korozji, wibracji, itp., i może degradować się i ulegać uszkodzeniom. W systemach
pracujących 24x7 przez długi okres czasu ma sens regularne testowanie sprzętu.
Testy powinny być uruchamiane okresowo, w czasie mniejszego obciążenia systemu.

• testowanie CPU — starannie przygotowany zestaw testowy powinien sprawdzać
poprawność pracy procesora we wszystkich trybach adresowania

• testowanie pamięci RAM — w przypadku pamięci ze sprzętową kontrolą
parzystości lub korekcyjnymi kodami Hamminga (ECC/EDC) ewentualne błędy
są korygowane w czasie odczytu; jednak nie powoduje to poprawienia zawartości
pamięci, dlatego stosuje się szorowanie pamięci (memory scrubbing),
polegające na cyklicznym odczytywaniu i powrotnym zapisywaniu wszystkich
komórek pamięci, wymuszające zapis poprawionej wartości; oczywiście nie
powoduje to naprawienia permanentnie uszkodzonych komórek pamięci

w przypadku użycia pamięci bez sprzętowego wykrywania i korygowania błędów
stosuje się cykliczne testowanie pamięci metodą zapisu i kontrolnego odczytu
starannie wybranych wzorców bitowych, co pozwala na wykrycie zarówno
przepalonych bitów jak i przesłuchów między ścieżkami sygnałowymi

Niezawodność i odporność na błędy systemów informatycznych — weryfikacja, walidacja, i testowanie 23



• testowanie pamięci ROM — zawartość pamięci ROM można testować za
pomocą obliczonych w czasie instalacji i konfiguracji systemu sum kontrolnych,
albo — lepiej — kodów CRC, pozwalających wykryć wszystkie błędy 1-bitowe
i praktycznie wszystkie błędy wielobitowe

• testowanie innych urządzeń — urządzenia takie jak przetworniki A/D, D/A,
multipleksery i kanały wejścia/wyjścia mogą mieć wbudowane moduły testowe,
sprawdzające i zapisujące stan urządzenia do pamięci za pomocą DMA

Niezawodność i odporność na błędy systemów informatycznych — weryfikacja, walidacja, i testowanie 24



Odporność na błędy

Podstawą zbudowania odporności systemu na błędy (software fault tolerance) jest
sformułowanie hipotezy defektów określającej jakie rodzaje defektów mają być
tolerowane przez system. Hipoteza dzieli przestrzeń stanów systemu na trzy regiony:

Dodatkowo: strategia NGU (Never Give Up — Nigdy Nie Rezygnuj).

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 25



Redundancja

Redundancja (nadmiarowość) jest jedną z głównych technik budowania
odporności na błędy, zarówno w sprzęcie jak i oprogramowaniu. W oczywisty
sposób, ponieważ prowadzi ona do budowy bardziej złożonych systemów, może
sama w sobie wprowadzać ryzyko dalszych defektów i związanych z nimi awarii.

Redundancja statyczna (maskująca) jest wbudowana wewnątrz systemu, który
usiłuje dzięki niej utrzymać poprawne działanie maskując występujące błędy. Jedną
z podstawowych technik jest TMR (Triple Modular Redundancy), polegająca na
zastosowaniu trzech identycznych elementów, i układu głosowania, który
porównuje sygnały na wyjściach wszystkich elementów, i jeśli jeden różni się od
dwóch pozostałych to na wyjście układu kierowany jest sygnał wyjściowy wybrany
większościowo. TMR ma głównie zastosowanie do uodpornianie na błędy sprzętu.

Redundancja dynamiczna polega na wyposażeniu systemu w element
oceniający czy nie występują błędy. W przypadku wykrycia błędu, układ sygnalizuje
to, pozostawiając jednak elementom zewnętrznym podjęcie odpowiednich działań.
Redundancja dynamiczna jest zatem metodą wykrywania błędów. Przykładami
mogą być bity parzystości pamięci, albo sumy kontrolne w pakietach komunikacji.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 26



Programowanie N-wersji

Zastosowanie redundancji typu TMR opiera się na założeniu, że błąd powstanie
wewnątrz jednego z układów, i będzie to błąd przypadkowy, albo wynikający ze
starzenia się sprzętu. Ponieważ systemy programowe nie starzeją się, a błędy
przypadkowe nie są najważniejszymi błędami, na które chcemy uodpornić system,
zatem podejście TMR ma ograniczone zastosowanie do systemów oprogramowania.

Zamiast tego, budowanie odporności koncentruje się na możliwych błędach
programowych. Metoda zwana programowaniem N-wersji (N-version

programming) polega na stworzeniu N funkcjonalnie równoważnych programów
odpowiadających jednej specyfikacji. Programy powinny być budowane przez N
różnych programistów (lub grup), bez komunikowania się między sobą. Programy
następnie wykonywane są jednocześnie w systemie, i dodatkowy proces drivera
porównuje uzyskane wyniki i wybiera jeden metodą głosowania.

Skuteczność tej metody opiera się na założeniu, że programy stworzone niezależnie,
mają różne defekty, i będą powodowały błędy niezależnie od siebie. To założenie
może być niesłuszne, jeśli np. programy zostały napisane w tym samym języku
programowania, i skompilowane tym samym kompilatorem i/lub z tymi samymi
bibliotekami.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 27



Dublowanie procesów

Techniką znacznie prostszą niż programowanie N-wersji jest dublowanie
procesów. Ma ona zastosowanie do uodporniania systemu na błędy ulotne.

Metoda polega na tworzeniu nadmiarowego podprocesu do wykonywania obliczeń,
a w przypadku gdyby napotkał on na jakiś błąd, zamyka się on zwracając
odpowiedni kod błędu. Proces nadzorujący stwierdza wystąpienie błędu, i tworzy
identyczny proces do ponownego wykonania tych samych obliczeń.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 28



Dublowanie procesów może być stosowane wielokrotnie na różnych poziomach. Na
przykład procedura może najpierw inicjalizować środowisko obliczeń, pozyskiwać
dane, itp., a dopiero potem inicjować zasadnicze obliczenia. Zarówno pierwsza faza
jak i druga mogą podlegać oddzielnemu dublowaniu. W oczywisty sposób,
dublowanie drugiej fazy jest mniej uciążliwe i nie powoduje konsekwencji
wykraczającej poza program.

Zastosowanie tego podejścia jest szczególnie łatwe i atrakcyjne w systemach
Unikso-podobnych, wykorzystujących model tworzenia procesu przez klonowanie
funkcją fork.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 29



Punkty kontrolne

Metoda polega ona na tworzeniu w programie punktów bezpiecznego wycofania się.
Jeżeli program w trakcie pracy sam wykryje błąd, to znaczy jakiś niepoprawny stan,
to najlepiej byłoby cofnąć się o kilka kroków, kiedy stan był jeszcze poprawny,
i powtórzyć małą porcję obliczeń.

Aby to było możliwe, należy w trakcie pracy okresowo, po zweryfikowaniu, że stan
programu jest poprawny, zapamiętać go w sposób umożliwiający cofnięcie
programu do tego stanu. W ten sposób program tworzy punkt kontrolny. Po
wykryciu błędu, program cofa się do ostatniego takiego punktu, i wznawia
obliczenia tak jakby nic się nie stało. Założeniem tej metody jest, że ponowne
wykonanie pewnej fazy obliczeń da tym razem inne wyniki. Założenie jest poprawne
jeśli błąd był wywołany czynnikami zewnętrznymi, albo jakąś kombinacją
mikrostanów programu, która nie zostanie powtórzona.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 30



Bloki wznawiania (recovery blocks)

Metoda bloków wznawiania wykorzystuje wiele (kilka) wersji zwykłych bloków
programowych uzupełnionych o punkt wznawiania umieszczony na początku
bloku, i test akceptowalności na końcu. Po wykonaniu bloku wykonywany jest
test dla stwierdzenia czy system znajduje się w akceptowalnym stanie. Jeśli nie, to
wykonanie programu wraca do punktu wznawiania na wejściu do bloku.

Po wznowieniu obliczeń, program uruchamia alternatywny moduł obliczeniowy.
(Wznowienie obliczeń z użyciem modułu podstawowego pozwoliłoby na
zabezpieczeniu programu jedynie przed błędami ulotnymi.) Gdyby zawiodły
obliczenia wszystkich modułów alternatywnych, to sterowanie wraca do modułu
nadrzędnego, który też może mieć swój blok wznawiania.

Metoda bloków wznawiania jest popularną techniką, jednak jej zastosowanie
w systemach czasu rzeczywistego jest ograniczone do przypadków, w których
ograniczenia czasowe pozwalają na powtarzanie obliczeń, i wynik uzyskany po
dodatkowym nakładzie obliczeń jest nadal przydatny.

Zastosowanie tego podejścia w systemach Unikso-podobnych, wykorzystuje na ogół
funkcje setjmp i longjmp do zachowywania stanu i wznawiania obliczeń.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 31



Odmładzanie

Metoda odmładzania procesów opiera się na założeniu, że stan początkowy po
uruchomieniu jest zawsze najlepiej przetestowany, i przez jakiś czas po starcie
system pracuje bezawaryjnie.

Metoda jest ograniczona przez tzw. stan twardy systemu, to jest stan po
inicjalizacji, komunikacji z urządzeniami zewnętrznymi, itp. Ten stan zwykle nie
powinien być utracony w procesie odmładzania. Jednak idea odmładzania polega
na porzuceniu poprzedniego stanu, i zainicjowaniu go od nowa!!

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 32



Mikro restarty

Restart systemu może być środkiem zapobiegania błędom, albo metodą
przywrócenia systemu do stanu poprawnego. O ile jednak restart całego systemu
często powoduje zaburzenie lub utrudnienie w pracy, to metodą może być podział
systemu na szereg mniejszych elementów, które można restartować niezależnie od
innych.

Zauważmy, że w niektórych systemach, jak Windows, po operacjach takich jak
instalacja lub reinstalacja jakiegoś programu wymagany jest restart całego systemu.
Wynika to z faktu, że bezpośrednio po starcie system konfiguruje sobie całe
dostępne oprogramowanie. Gdyby tę warstwę konfiguracji oprogramowania wydzielić
jako osobny podsystem, który mógłby być restartowany samodzielnie, nie byłoby
konieczności restartu całego systemu. Metoda ta jest szeroko stosowana w innych
systemach operacyjnych.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 33



Poprawianie stanu

Poprawianie stanu polega na podjęciu działań doraźnych, w przypadku wykrycia
nieprawidłowości. Jednak zamiast poszukiwania jej źródeł, i podjęcia próby
radykalnej naprawy sytuacji, likwidowane są tylko objawy.

Na przykład, wiedząc, że zmienna powinna zawierać wartość temperatury
zmierzonej przez czujnik, i że powinna ona zawierać się w przedziale 0-70◦ moduł
poprawiania stanu mógłby, po wykryciu wartości 95 napisać ja wartością 70, albo
po wykryciu wartości −13 nadpisać ją wartością 0. Inaczej mówiąc, zauważywszy,
że wartość jest niepoprawna, ustawiamy ją na poprawną, wybraną tak, by
z pewnym prawdopodobieństwem była zbliżona do prawidłowego stanu systemu.

Jest to więc rodzaj objawowego leczenia choroby. Zamiast podawać antybiotyk,
podajemy lekarstwo zbijające gorączkę. Jak wiemy, takie leczenie stosuje się, i jest
to słuszna metoda, jeśli nic innego w danej chwili nie można zrobić, a poprawienie
stanu może spowodować niedopuszczenie do natychmiastowej awarii, i dalsze
działanie systemu, przynajmniej przez jakiś czas.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 34



Watchdog

W systemach czasu rzeczywistego procedura restartu po
wystąpieniu i wykryciu awarii jest często zautomatyzowana
i rutynowo implementowana. Jedną ze stosowanych metod
jest tzw. watchdog, czyli system monitorujący pracę
systemu, i wykonujący fizyczny restart po wykryciu zbyt
długiego czasu wykonywania się programu.

Watchdog może (powinien) być zrealizowany sprzętowo
i niezależny od reszty systemu, co daje gwarancję jego
poprawnej pracy nawet jeśli awaria systemu wyłącza z akcji
inne jego mechanizmy odpornościowe.

Po uruchomieniu, watchdog cyklicznie uruchamia timer na
zaprogramowany odcinek czasu (np. 100 milisekund), po
którym inicjuje restart systemu, o ile sam nie zostanie
zresetowany zaprogramowanym kodem wpisanym na wejście.
Restart systemu następuje również w przypadku zaniku
zasilania watchdoga przez system.

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 35



Bibliografia

Algirdas Avižienis, A., et al., Basic concepts and taxonomy of dependable and
secure computing, IEEE Trans. on Dependable and Secure Computing, Vol.1(1),
pp.11-33, 2004

Niezawodność i odporność na błędy systemów informatycznych — odporność na błędy 36


